
Spicy
Release 1.4.0

Zeek Project

Jun 21, 2022

CONTENTS

1 Getting in Touch 3

2 Documentation 5
2.1 Installation . 5
2.2 Getting Started . 11
2.3 Frequently Asked Questions . 17
2.4 Tutorial: A Real Analyzer . 18
2.5 Programming in Spicy . 33
2.6 Toolchain . 110
2.7 Zeek Integration . 116
2.8 Custom Host Applications . 131
2.9 Release Notes . 139
2.10 Developer’s Manual . 145

3 Index 153

Index 155

i

ii

Spicy, Release 1.4.0

Jun 21, 2022.

http-request.spicy

module HTTP;

const Token = /[^ \t\r\n]+/;
const WhiteSpace = /[\t]+/;
const NewLine = /\r?\n/;

public type RequestLine = unit {
method: Token;
: WhiteSpace;
uri: Token;
: WhiteSpace;
version: Version;
: NewLine;

on %done { print self; }
};

type Version = unit {
: /HTTP\//;
number: /[0-9]+\.[0-9]+/;

};

echo "GET /index.html HTTP/1.0" | spicy-driver http-request.spicy
[$method=b"GET", $uri=b"/index.html", $version=[$number=b"1.0"]]

Overview Spicy is a parser generator that makes it easy to create robust C++ parsers for network protocols, file
formats, and more. Spicy is a bit like a “yacc for protocols”, but it’s much more than that: It’s an all-in-one
system enabling developers to write attributed grammars that describe both syntax and semantics of an input
format using a single, unified language. Think of Spicy as a domain-specific scripting language for all your
parsing needs.

The Spicy toolchain turns such grammars into efficient C++ parsing code that exposes an API to host applica-
tions for instantiating parsers, feeding them input, and retrieving their results. At runtime, parsing proceeds fully
incrementally—and potentially highly concurrently—on input streams of arbitrary size. Compilation of Spicy
parsers takes place either just-in-time at startup (through a C++ compiler); or ahead-of-time either by creating
pre-compiled shared libraries, or by giving you generated C++ code that you can link into your application.

Spicy comes with a Zeek plugin that enables adding new protocol and file analyzers to Zeek without having to
write any C++ code. You define the grammar, specify which Zeek events to generate, and Spicy takes care of
the rest. There’s also a Zeek analyzers package that provides Zeek with several new, Spicy-based analyzers.

See our collection of example grammars to get a sense of what Spicy looks like.

License Spicy is open source and released under a BSD license, which allows for pretty much unrestricted use as long
as you leave the license header in place. You fully own any parsers that Spicy generates from your grammars.

History Spicy was originally developed as a research prototype at the International Computer Science Institute with
funding from the U.S. National Science Foundation. Since then, Spicy has been rebuilt from the ground up by
Corelight, which has contributed the new implementation to the Zeek Project.

CONTENTS 1

https://github.com/zeek/spicy-plugin
https://www.zeek.org
https://github.com/zeek/spicy-analyzers
http://www.icsi.berkeley.edu/
https://www.nsf.gov
https://www.corelight.com

Spicy, Release 1.4.0

2 CONTENTS

CHAPTER

ONE

GETTING IN TOUCH

Having trouble using Spicy? Have ideas how to make Spicy better? We’d like to hear from you!

• Report issues on the GitHub ticket tracker.

• Ask the #spicy channel on Zeek’s Slack.

• Propose ideas, and show what you’re doing, on GitHub’s Discussions.

• Subscribe to the Spicy mailing list.

• To follow development, subscribe to the commits mailing list (it can be noisy!).

3

https://github.com/zeek/spicy/issues
https://zeek.org/connect
https://github.com/zeek/spicy/discussions
https://lists.zeek.org/mailman3/lists/spicy.lists.zeek.org
https://lists.zeek.org/mailman3/lists/spicy-commits.lists.zeek.org

Spicy, Release 1.4.0

4 Chapter 1. Getting in Touch

CHAPTER

TWO

DOCUMENTATION

2.1 Installation

Spicy can be installed from pre-built binaries (Linux, macOS) or with Homebrew (macOS), executed via Docker
containers (Linux), or built from source (Linux, macOS, FreeBSD):

• Pre-built binaries

– Linux

– macOS

* Homebrew

* Pre-built binaries

• Using Docker

– Pre-requisites

* Linux

* macOS

– Using pre-built Docker images

– Build your own Spicy container

• Building from source

– Prerequisites

* Linux

* macOS

* FreeBSD

– Building Spicy

• Parser development setup

We generally aim to follow Zeek’s platform policy on which platforms to support and test.

Note: Most of the installation options discussed in this chapter do not include the Zeek plugin for Spicy. We
recommend installing the plugin through Zeek’s package manager; see its installation instructions.

5

https://github.com/zeek/zeek/wiki/Platform-Support-Policy

Spicy, Release 1.4.0

2.1.1 Pre-built binaries

Linux

We provide pre-built Spicy binaries for a range of Linux distributions, both for the current release version and for
development builds made from the Git main branch.

These binary artifacts are distributed as either DEB or RPM packages for the corresponding distribution; or, in a couple
cases, as TAR archives. To install the binaries, download the corresponding package and execute one of the following:

DEB packages

dpkg --install spicy.deb

RPM packages

rpm -i spicy.rpm

TAR archives The TAR archives need to be unpacked into /opt/spicy. Any previous installation must be removed
first:

rm -rf /opt/spicy && mkdir /opt/spicy
tar xf spicy.tar.gz -C /opt/spicy --strip-components=1

The binaries may require installation of additional dependencies; see the Dockerfile for the respective platform
for what’s needed.

Platform Release Version Development Version Dockerfile
Alpine 3.12 TAR TAR Dockerfile
CentOS Stream 8 RPM Dockerfile
Debian 9 DEB DEB Dockerfile
Debian 10 DEB DEB Dockerfile
Debian 11 DEB DEB Dockerfile
Fedora 33 RPM RPM Dockerfile
Fedora 34 RPM RPM Dockerfile
Ubuntu 16 DEB DEB Dockerfile
Ubuntu 18 DEB DEB Dockerfile
Ubuntu 20 DEB DEB Dockerfile

macOS

Homebrew

We provide a Homebrew formula for installation of Spicy. After installing Homebrew add the Zeek tap:

brew tap zeek/zeek

To install the most recent Spicy release version, execute:

brew install spicy

To instead install the current development version, execute:

6 Chapter 2. Documentation

https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_alpine_3_12.tar.gz
https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_alpine_3_12/packages/build/spicy-dev.tar.gz
https://github.com/zeek/spicy/blob/main/docker/Dockerfile.alpine-3.12
https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_centos_stream_8/packages/spicy-dev.rpm
https://github.com/zeek/spicy/blob/main/docker/Dockerfile.centos-stream-8
https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_debian9.deb
https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_debian9/packages/spicy-dev.deb
https://github.com/zeek/spicy/blob/main/docker/Dockerfile.debian-9
https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_debian10.deb
https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_debian10/packages/spicy-dev.deb
https://github.com/zeek/spicy/blob/main/docker/Dockerfile.debian-10
https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_debian11.deb
https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_debian11/packages/spicy-dev.deb
https://github.com/zeek/spicy/blob/main/docker/Dockerfile.debian-11
https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_fedora33.rpm
https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_fedora33/packages/spicy-dev.rpm
https://github.com/zeek/spicy/blob/main/docker/Dockerfile.fedora-33
https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_fedora34.rpm
https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_fedora33/packages/spicy-dev.rpm
https://github.com/zeek/spicy/blob/main/docker/Dockerfile.fedora-34
https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_ubuntu16.deb
https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_ubuntu16/packages/spicy-dev.deb
https://github.com/zeek/spicy/blob/main/docker/Dockerfile.ubuntu-16
https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_ubuntu18.deb
https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_ubuntu18/packages/spicy-dev.deb
https://github.com/zeek/spicy/blob/main/docker/Dockerfile.ubuntu-18
https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_ubuntu20.deb
https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_ubuntu20/packages/spicy-dev.deb
https://github.com/zeek/spicy/blob/main/docker/Dockerfile.ubuntu-20
https://docs.brew.sh/Installation

Spicy, Release 1.4.0

brew install --HEAD spicy

Pre-built binaries

We provide TAR archives with pre-built binaries for the following macOS versions:

macOS Release Version Development Version
Catalina (10.15) TAR TAR
Big Sur (11) TAR TAR

The TAR archives need to be unpacked into /opt/spicy. Any previous installation must be removed first. To
prevent macOS from quarantining the files, you should download and unpack via the command line:

curl -L <link-per-above> -o spicy.tar.gz
rm -rf /opt/spicy && mkdir /opt/spicy
tar xf spicy.tar.gz -C /opt/spicy --strip-components 1

For JIT support, these binaries require an Xcode installation.

2.1.2 Using Docker

We provide pre-built Docker images on Docker Hub. The Spicy distribution also comes with a set of Docker files to
create base images for all the supported Linux distributions that put all of Spicy’s dependencies in place. We’ll walk
through using either of these in the following.

Pre-requisites

You first need to install Docker on your host system, if you haven’t yet.

Linux

All major Linux distributions provide Docker. Install it using your package manager. Alternatively, follow the official
instructions.

macOS

Install Docker Desktop for Mac following the official instructions.

Note: Docker Desktop for Mac uses a VM behind the scenes to host the Docker runtime environment. By default
it allocates 2 GB of RAM to the VM. This is not enough to compile Spicy or Zeek and will cause an error that looks
something like this:

c++: internal compiler error: Killed (program cc1plus)
Please submit a full bug report,
with preprocessed source if appropriate.
See <file:///usr/share/doc/gcc-7/README.Bugs> for instructions.

2.1. Installation 7

https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_macos_catalina.tar.gz
https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/macos_catalina/packages/build/spicy-dev.tar.gz
https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_macos_big_sur.tar.gz
https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/macos_big_sur/packages/build/spicy-dev.tar.gz
https://docs.docker.com/install/
https://docs.docker.com/docker-for-mac
https://docs.docker.com/docker-for-mac/install

Spicy, Release 1.4.0

This is due to the VM hitting an out-of-memory condition. To avoid this you will need to allocate more RAM to the
VM. Click on the Docker Icon in your menubar and select “Preferences”. Click on the “Advanced” tab and then use
the slider to select 8 GB of RAM. Docker Desktop will restart and then you will be ready to go.

Using pre-built Docker images

We provide the following Docker images:

Spicy Version Image name/tag Source
Release zeekurity/spicy Dockerfile
Development zeekurity/spicy-dev Dockerfile

These images include Zeek, the Spicy plugin for Zeek, and the Zeek analyzer collection as well, so you can use them
to try out the full setup end-to-end.

To run the release image, execute the following command:

docker run -it zeekurity/spicy:latest

Spicy is installed in /opt/spicy on these images. The development image is updated nightly.

Build your own Spicy container

You can build base images for your own Spicy setups through the Docker files coming with the distribution. These
images do not include Spicy itself, just the dependencies that it needs on each platform, both for a source build and
for the using the corresponding binary packages. (The images do include Zeek, but not the Zeek plugin.)

To build an image, go into Spicy’s docker directory and run make to see the container platforms available:

cd docker
make

Run "make build-<platform>", then "make run-<platform>".

Available platforms:

alpine-3.12
centos-8-stream
debian-10
[...]

To build and run a container image based on, for example, Debian 10, execute:

make build-debian-10
make run-debian-10

Note: The primary purpose of these Docker files is creating the foundation for our CI pipelines. However, they also
double as verified installation instructions for setting up Spicy’s dependencies on the various platforms, which is why
we are describing them here.

8 Chapter 2. Documentation

https://hub.docker.com/r/zeekurity/spicy
https://github.com/zeek/spicy/blob/main/ci/Dockerfile.dockerhub
https://hub.docker.com/r/zeekurity/spicy-dev
https://github.com/zeek/spicy/blob/main/ci/Dockerfile.dockerhub
https://github.com/zeek/spicy-analyzers
https://github.com/zeek/spicy/blob/main/docker

Spicy, Release 1.4.0

2.1.3 Building from source

Prerequisites

To build Spicy from source, you will need:

• For compiling the toolchain:

– A C++ compiler that supports C++17 (known to work are Clang >= 9 and GCC >= 9)

– CMake >= 3.15

– Bison >= 3.0

– Flex >= 2.6

– Python >= 3.4

– Zlib (no particular version)

• For testing:

– BTest >= 0.66 (pip install btest)

– Bash (for BTest)

• For building the documentation:

– Sphinx >= 1.8

– Pygments >= 2.5

– Read the Docs Sphinx Theme (pip install sphinx_rtd_theme)

In the following we record how to get these dependencies in place on some popular platforms. Please file an issue if
you have instructions for platforms not yet listed here.

Linux

See the corresponding Dockerfiles.

macOS

Make sure you have Xcode installed, including its command-line tools (xcode-select --install).

If you are using Homebrew:

brew install bison flex cmake ninja python@3.8 sphinx-doc
pip3 install btest sphinx_rtd_theme

If you are using MacPorts:

port install flex bison cmake ninja python38 py38-pip py38-sphinx py38-sphinx_rtd_
→˓theme
pip install btest

2.1. Installation 9

https://cmake.org
https://www.gnu.org/software/bison
https://www.gnu.org/software/flex
https://www.python.org/downloads/
https://www.zlib.net
https://github.com/zeek/btest
https://www.sphinx-doc.org/en/master
https://pygments.org/
https://sphinx-rtd-theme.readthedocs.io/en/stable/
https://github.com/zeek/spicy/issues/
https://brew.sh
https://www.macports.org

Spicy, Release 1.4.0

FreeBSD

See the prepare script coming with the Spicy distribution.

Building Spicy

Get the code:

git clone --recursive https://github.com/zeek/spicy

The short version to build Spicy is the usual process then:

./configure && make && make install

However, you may want to customize the build a bit, see the output ./configure --help for the available
options. In particular, you can use --prefix=/other/path to install into something else than /usr/local.

The final configure output will summarize your build’s configuration.

Note: For developers, the following configure options may be particular useful:

• --enable-ccache: use the ccache compiler cache to speed up compilation

• --enable-debug: compile a non-optimized debug version

• --enable-sanitizer: enable address & leak sanitizers

• --generator=Ninja: use the faster ninja build system instead of make

Using Ninja and ccache will speed up compile times. On Linux, compiling will also be quite a bit faster if you have
the “Gold linker” available. To check if you do, see if which ld.gold returns anything. If yes, configure will
automatically pick it up.

Once you have configured Spicy, running make will change into the newly created build directory and start the
compilation there. Once finished, make test will execute the test suite. It will take a bit, but all tests should be
passing (unless explicitly reported as expected to fail). Finally, make install will install Spicy system-wide into
the configured prefix. If you are installing into a non-standard location, make sure that <prefix>/bin is in your
PATH.

Note: You can also use the Spicy tools directly out of the build directory without installing; the binaries land in
build/bin.

To build Spicy’s documentation, run make inside the docs/ directory. Documentation will then be located in
build/doc/html.

10 Chapter 2. Documentation

https://github.com/zeek/spicy/blob/main/ci/prepare_freebsd.sh

Spicy, Release 1.4.0

2.1.4 Parser development setup

In order to speed up compilation of Spicy parsers, users can create a cache of precompiled files. This cache is tied to
a specific Spicy version, and needs to be recreated each time Spicy is updated.

To precompile the files execute the following command:

spicy-precompile-headers

Note: By default the cache is located in the folder .cache/spicy/<VERSION> inside the user’s home directory.
This location can be overridden by setting the environment variable SPICY_CACHE to a different folder path, both
when executing spicy-precompile-headers and Spicy toolchain commands.

2.2 Getting Started

The following gives a short overview how to write and use Spicy parsers. We won’t use many of Spicy’s features yet,
but we we’ll walk through some basic code examples and demonstrate typical usage of the Spicy toolchain.

2.2.1 Hello, World!

Here’s a simple “Hello, world!” in Spicy:

module Test;

print "Hello, world!";

Assuming that’s stored in hello.spicy, you can compile and execute the code with Spicy’s standalone compiler
spicyc:

spicyc -j hello.spicy
Hello, world!

spicyc -j compiles the source code into native code on the fly using your system’s C++ compiler, and then directly
executes the result. If you run spicyc -c hello.spicy, you will see the C++ code that Spicy generates behind
the scenes.

You can also precompile the code into an object file, and then load that for immediate execution:

spicyc -j -o hello.hlto hello.spicy
spicyc -j hello.hlto
Hello, world!

To compile Spicy code into an actual executable on disk, use spicy-build:

spicy-build -o a.out hello.spicy
./a.out
Hello, world!

spicy-build is a small shell script that wraps spicyc -c and runs the resulting code through the system’s C++
compiler to produce an executable.

2.2. Getting Started 11

Spicy, Release 1.4.0

Note:

Internally, Spicy employs another intermediary language called HILTI that sits between the Spicy source code and the
generated C++ output. For more complex Spicy grammars, the HILTI code is often far easier to comprehend than the
final C++ code, in particular once we do some actual parsing. To see that intermediary HILTI code, execute spicy
-p hello.spicy. The .hlto extension comes from HILTI as well: It’s an HILTI-generated object file.

2.2.2 A Simple Parser

To actually parse some data, we now look at a small example dissecting HTTP-style request lines, such as: GET
/index.html HTTP/1.0.

Generally, in Spicy you define parsers through types called “units” that describe the syntax of a protocol. A set of
units forms a grammar. In practice, Spicy units typically correspond pretty directly to protocol data units (PDUs) as
protocol specifications tend to define them. In addition to syntax, a Spicy unit type can also specify semantic actions,
called hooks, that will execute during parsing as the corresponding pieces are extracted.

Here’s an example of a Spicy script for parsing HTTP request lines:

Listing 1: my-http.spicy

module MyHTTP;

const Token = /[^ \t\r\n]+/;
const WhiteSpace = /[\t]+/;
const NewLine = /\r?\n/;

type Version = unit {
: /HTTP\//;
number: /[0-9]+\.[0-9]+/;

};

public type RequestLine = unit {
method: Token;
: WhiteSpace;
uri: Token;
: WhiteSpace;
version: Version;
: NewLine;

on %done {
print self.method, self.uri, self.version.number;
}

};

In this example, you can see a number of things that are typical for Spicy code:

• A Spicy input script starts with a module statement defining a namespace for the script’s content.

• The layout of a piece of data is defined by creating a unit type. The type lists individual fields in the order they
are to be parsed. The example defines two such units: RequestLine and Version.

12 Chapter 2. Documentation

Spicy, Release 1.4.0

• Each field inside a unit has a type and an optional name. The type defines how that field will be parsed from
raw input data. In the example, all fields use regular expressions instead of actual data types (uint32 would
be an actual type), which means that the generated parser will match these expressions against the input stream.
Assuming a match, the corresponding value will then be recorded with type bytes, which is Spicy’s type for
binary data. Note how the regular expressions can either be given directly as a field’s type (as in Version), or
indirectly via globally defined constants (as in RequestLine).

• If a field has a name, it can later be referenced to access its value. Consequently, in this example all fields with
semantic meanings have names, while those which are unlikely to be relevant later do not (e.g., whitespace).

• A unit field can have another unit as its type; here that’s the case for the version field in RequestLine;
we say that Version is a subunit of RequestLine. The meaning for parsing is straight-forward: When
parsing the top-level unit reaches the field with the subunit, it switches to processing that field according to the
subunit’s definition. Once the subunit is fully parsed, the top-level unit’s next field is processed as normal from
the remaining input data.

• We can specify code to be executed when a unit has been completely parsed by implementing a hook called
%done. Inside the hook’s code body, statements can refer to the unit instance currently being parsed through
an implicitly defined self identifier. Through self, they can then access any fields already parsed by using a
standard attribute notation (self.<field>). As the access to version shows, this also works for getting to
fields nested inside subunits. In the example, we tell the generated parser to print out three of the parsed fields
whenever a RequestLine has been fully parsed.

• The public keyword exposes the generated parser of a unit to to external host applications wanting to deploy
it. Only public units can be used as the starting point for feeding input; non-public subunits cannot be directly
instantiated by host applications.

Now let us see how we turn this into an actual parser that we can run. Spicy comes with a tool called spicy-driver
that acts as a generic, standalone host application for Spicy parsers: It compiles Spicy scripts into code and then feeds
them its standard input as data to parse. Internally, spicy-driver uses much of the same machinery as spicyc,
but provides additional code kicking off the actual parsing as well.

With the above Spicy script in a file my-http.spicy, we can use spicy-driver on it like this:

echo "GET /index.html HTTP/1.0" | spicy-driver my-http.spicy
GET, /index.html, 1.0

As you see, the print statement inside the %done hook wrote out the three fields as we would expect (print
automatically separates its arguments with commas). If we pass something into the driver that’s malformed according
to our grammar, the parser will complain:

echo "GET XXX/1.0" | spicy-driver my-http.spicy
[fatal error] terminating with uncaught exception of type spicy::rt::ParseError:
→˓parse error: failed to match regular expression (my-http.spicy:7)

Using spicy-driver in this way relies on Spicy’s support for just-in-time compilation, just like spicyc -j. In
the background, there’s C++ code being generated and compiled without that we see it. Just like in the earlier example,
we can also either use spicyc to precompile the C++ code into an object file that spicy-driver can then load,
or use spicy-build to give us an actual executable:

spicyc -j -o my-http.hlto my-http.spicy
echo "GET /index.html HTTP/1.0" | spicy-driver my-http.hlto
GET, /index.html, 1.0

spicy-build -o a.out my-http.spicy
echo "GET /index.html HTTP/1.0" | ./a.out
GET, /index.html, 1.0

2.2. Getting Started 13

Spicy, Release 1.4.0

Spicy also comes with another tool spicy-dump that works similar to spicy-driver, but prints out the parsed fields
at the end, either in a custom ASCII representation or as JSON:

echo "GET /index.html HTTP/1.0" | spicy-dump my-http.hlto
MyHTTP::RequestLine {

method: GET
uri: /index.html
version: MyHTTP::Version {

number: 1.0
}

}

echo "GET /index.html HTTP/1.0" | spicy-dump -J my-http.hlto
{"method":"GET","uri":"/index.html","version":{"number":"1.0"}}

If you want to see the actual parsing code that Spicy generates, use spicyc again: spicyc -c my-http.spicy
will show the C++ code, and spicyc -p my-http.spicy will show the intermediary HILTI code.

2.2.3 Zeek Integration

Now let’s use our RequestLine parser with Zeek. For that we first need to prepare some input, and get Zeek to load
the required Spicy plugin. Then we can use the grammar that we already got to add a new protocol analyzer to Zeek.

Preparations

Because Zeek works from network packets, we first need a packet trace with the payload we want to parse. We can’t
just use a normal HTTP session as our simple parser wouldn’t go further than just the first line of the protocol exchange
and then bail out with an error. So instead, for our example we create a custom packet trace with a TCP connection
that carries just a single HTTP request line as its payload:

tcpdump -i lo0 -w request-line.pcap port 12345 &
nc -l 12345 &
echo "GET /index.html HTTP/1.0" | nc localhost 12345
killall tcpdump nc

This gets us this trace file.

Next, we need to tell Zeek to load a Spicy plugin. If your Spicy build has found Zeek during its configure run, it
will have already compiled and installed the plugin into Zeek’s system-wide plugin directory. You can confirm that
with zeek -N:

zeek -N
<...>
_Zeek::Spicy - Support for Spicy parsers (*.spicy, *.evt) (dynamic, version 0.3.0)

As you can see, Zeek now reports the Spicy plugin as available among all the other plugins that it has already built-in.

If you don’t see the Spicy plugin in there, the installation might not have had permission to write into the Zeek plugin
directory. See Installation for how to point Zeek to the right location manually.

14 Chapter 2. Documentation

Spicy, Release 1.4.0

Adding a Protocol Analyzer

Now we can go ahead and add a new protocol analyzer to Zeek. We already got the Spicy grammar to parse our
connection’s payload, it’s in my-http.spicy. In order to use this with Zeek, we have two additional things to do:
(1) We need to let Zeek know about our new protocol analyzer, including when to use it; and (2) we need to define
at least one Zeek event that we want our parser to generate, so that we can then write a Zeek script working with the
information that it extracts.

We do both of these by creating an additional control file for Zeek:

Listing 2: my-http.evt

1 protocol analyzer spicy::MyHTTP over TCP:
2 parse originator with MyHTTP::RequestLine,
3 port 12345/tcp;
4

5 on MyHTTP::RequestLine -> event MyHTTP::request_line($conn, self.method, self.uri,
→˓self.version.number);

The first block (lines 1-3) tells Zeek that we have a new protocol analyzer to provide. The analyzer’s Zeek-side name
is spicy::MyHTTP, and it’s meant to run on top of TCP connections (line 1). Lines 2-3 then provide Zeek with
more specifics: The entry point for originator-side payload is the MyHTTP::RequestLine unit type that our Spicy
grammar defines (line 2); and we want Zeek to activate our analyzer for all connections with a responder port of 12345
(which, of course, matches the packet trace we created).

The second block (line 5) tells the Spicy plugin that we want to define one event. On the left-hand side of that line
we give the unit that is to trigger the event. The right-hand side defines its name and arguments. What we are saying
here is that every time a RequestLine line has been fully parsed, we’d like a MyHTTP::request_line event
to go to Zeek. Each event instance will come with four parameters: Three of them are the values of corresponding unit
fields, accessed just through normal Spicy expressions (inside an event argument expression, self refers to the unit
instance that has led to the generation of the current event). The first parameter, $conn, is a “magic” keyword that
lets the Spicy plugin pass the Zeek-side connection ID (conn_id) to the event.

Now we got everything in place that we need for our new protocol analyzer—except for a Zeek script actually doing
something with the information we are parsing. Let’s use this:

Listing 3: my-http.zeek

event MyHTTP::request_line(c: connection, method: string, uri: string, version:
→˓string)

{
print fmt("Zeek saw from %s: %s %s %s", cidorig_h, method, uri, version);
}

You see an Zeek event handler for the event that we just defined, having the expected signature of four parameters
matching the types of the parameter expressions that the *.evt file specifies. The handler’s body then just prints out
what it gets.

Finally we can put together our pieces by pointing Zeek to all the files we got:

zeek -Cr request-line.pcap my-http.spicy my-http.evt my-http.zeek
Zeek saw from 127.0.0.1: GET /index.html 1.0

When Zeek starts up here, it passes any *.spicy and *.evt on to the Spicy plugin, which then first kicks off
all of its code generation. Afterwards the plugin registers the new analyzer with the Zeek event engine. Zeek then
begins processing the packet trace as usual, now activating our new analyzer whenever it sees a TCP connection on
port 12345. Accordingly, the MyHTTP::request_line event gets generated once the parser gets to process the
session’s payload. The Zeek event handler then executes and prints the output we would expect.

2.2. Getting Started 15

Spicy, Release 1.4.0

Note: By default, the Zeek plugin suppresses any output from Spicy-side print statements. You can add
Spicy::enable_print=T to the command line to see it. In the example above, you would then get an addi-
tional line of output: GET, /index.html, 1.0.

If you tried the above, you will have noticed that Zeek took a little while to start up. That’s of course because we’re
compiling C++ code in the background again before any packet processing can even begin. To accelerate the startup,
we can once more precompile our analyzer similar to what we did before with spicyc. We’ll use a different tool
here, though: spicyz is a small standalone application for precompiling analyzers for the Spicy plugin to later load.
We give spicyz (1) the *.spicy and *.evt inputs that we handed to Zeek above; and (2) an output *.hlto file
to write the compiled analyzer into:

spicyz -o my-http-analyzer.hlto my-http.spicy my-http.evt
zeek -Cr request-line.pcap my-http-analyzer.hlto my-http.zeek
Zeek saw from 127.0.0.1: GET /index.html 1.0

That zeek execution is now happening instantaneously.

2.2.4 Custom Host Application

Spicy parsers expose a C++ API that any application can leverage to send them data for processing. The specifics of
how to approach this depend quite a bit on the particular needs of the application (Is it just a single, static parser that’s
needed; or a set not known upfront, and compiled dynamically? Just a single input stream, or many? All data in one
buffer, or coming in incrementally? How does the application want to access the parsed information?). That said, the
most basic use case is quite straight-forward: feeding data into a specific parser. Here’s a small C++ program that
parses input with our RequestLine parser:

Listing 4: my-http.cc

#include <iostream>

#include <hilti/rt/libhilti.h>
#include <spicy/rt/libspicy.h>

using spicy::rt::fmt;

int main(int argc, char** argv) {
hilti::rt::init();
spicy::rt::init();

spicy::rt::Driver driver;
auto parser = driver.lookupParser("MyHTTP::RequestLine");
assert(parser);

try {
std::ifstream in("/dev/stdin", std::ios::in);
driver.processInput(**parser, in);

} catch (const std::exception& e) {
std::cerr << e.what() << std::endl;

}

spicy::rt::done();
hilti::rt::done();
return 0;

}

16 Chapter 2. Documentation

Spicy, Release 1.4.0

spicy-build -S -o a.out my-http.cc my-http.spicy
echo "GET /index.html HTTP/1.0" | ./a.out
GET, /index.html, 1.0
echo 'Hello, World!' | ./a.out
parse error: failed to match regular expression (my-http.spicy:7)

We are using -S with spicy-build because we’re providing our own main function.

The code in my-http.cc is the core of what spicy-driver does if we ignore the dynamic JIT compilation. See
Custom Host Applications for more.

2.3 Frequently Asked Questions

2.3.1 Spicy Language

Are Spicy’s global variables really global?

Indeed, they are. Changes to global variables become visible to all Spicy code; their values are not associated with
specific connections or other dynamic state. If they are public, they can even be accessed from other, unrelated modules
as well. This all means that globals often won’t be the right tool for the job; it’s rare that a parser needs truly global
state. Take a look at Contexts for a different mechanism tying state to the current connection, which is a much more
common requirement.

2.3.2 Toolchain

Is there a way to speed up compilation of Spicy code?

Depending on the complexity of the Spicy code, processing through spicyc/spicyz/spicy-driver may take a
bit. The bulk of the time time tends to be spent on compiling the generated C++ code; often about 80-90%. Make sure
to run spicy-precompile-headers to speed that up a little. During development of new parsers, it also helps quite a bit
to build non-optimized debug versions by adding --debug to the command-line.

If you want to see a break-down of where Spicy spends its time, run the tools with --report-times. (In the output
at the end, jit refers to compiling generated C++ code).

2.3.3 Zeek

Do I need a Spicy installation for using the Zeek plugin?

No, if the Zeek plugin was compiled with --build-toolchain=no, it will not require Spicy to be installed on
the system. It will only be able to load pre-compiled analyzers then (i.e., *.hlto files), which you can create on a
similar system that has Spicy installed through spicyz. The build process will leave a binary distribution inside your
build directory at zeek/plugin/Zeek_Spicy.tgz.

2.3. Frequently Asked Questions 17

Spicy, Release 1.4.0

Does Spicy support Dynamic Protocol Detection (DPD)?

Yes, see the corresponding section on how to add it to your analyzers.

Can I write a Layer 2 protocol analyzer with Spicy?

Yes, you can. In Zeek terminology a layer 2 protocol analyzer is a packet analyzer, see the corresponding section on
how to declare such an analyzer.

I have print statements in my Spicy grammar, why do I not see any output when running Zeek?

The Zeek plugin by default disables the output of Spicy-side print statements. To enable them, add
Spicy::enable_print=T to the Zeek command line (or redef Spicy::enable_print=T; to a Zeek
script that you are loading).

My analyzer recognizes only one or two TCP packets even though there are more in the input.

The Zeek Spicy plugin parses the sending and receiving sides of a TCP connection each according to the given Spicy
grammar. This means that if more than one message can be sent per side the grammar needs to allow for that. For
example, if the grammar parses messages of the protocol as Message, the top-level parsing unit given in the EVT file
needs to be able to parse a list of messages Message[].

A simple way to accomplish this is to introduce a parser which wraps messages of the protocol:

type Message = unit {
Fields for messages of the protocol.

};

Parser used e.g., in EVT file.
public type Messages = unit {

messages: Message[];
};

2.4 Tutorial: A Real Analyzer

In this chapter we will develop a simple protocol analyzer from scratch, including full Zeek integration. Our analyzer
will parse the Trivial File Transfer Protocol (TFTP) in its original incarnation, as described in RFC 1350. TFTP
provides a small protocol for copying files from a server to a client system. It is most commonly used these days for
providing boot images to devices during initialization. The protocol is sufficiently simple that we can walk through it
end to end. See its Wikipedia page for more background.

18 Chapter 2. Documentation

https://tools.ietf.org/html/rfc1350
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol

Spicy, Release 1.4.0

Contents

• Creating a Spicy Grammar

– Parsing One Packet Type

– Generalizing to More Packet Types

– Using Enums

– Using Unit Parameters

– Complete Grammar

• Zeek Integration

– Compiling the Analyzer

– Activating the Analyzer

– Defining Events

– Detour: Zeek vs. TFTP

– Zeek Script

• Next Steps

2.4.1 Creating a Spicy Grammar

We start by developing Spicy grammar for TFTP. The protocol is packet-based, and our grammar will parse the content
of one TFTP packet at a time. While TFTP is running on top of UDP, we will leave the lower layers to Zeek and have
Spicy parse just the actual UDP application-layer payload, as described in Section 5 of the protocol standard.

Parsing One Packet Type

TFTP is a binary protocol that uses a set of standardized, numerical opcodes to distinguish between different types of
packets—a common idiom with such protocols. Each packet contains the opcode inside the first two bytes of the UDP
payload, followed by further fields that then differ by type. For example, the following is the format of a TFTP “Read
Request” (RRQ) that initiates a download from a server:

2 bytes string 1 byte string 1 byte (from RFC 1350)
--

| Opcode | Filename | 0 | Mode | 0 |
--

A Read Request uses an opcode of 1. The filename is a sequence of ASCII bytes terminated by a null byte. The mode
is another null-terminated byte sequence that usually is either netascii, octet, or mail, describing the desired
encoding for data that will be received.

Let’s stay with the Read Request for a little bit and write a Spicy parser just for this one packet type. The following is
a minimal Spicy unit to parse the three fields:

module TFTP; # [1]

public type ReadRequest = unit { # [2]
opcode: uint16; # [3]

(continues on next page)

2.4. Tutorial: A Real Analyzer 19

https://tools.ietf.org/html/rfc1350#section-5

Spicy, Release 1.4.0

(continued from previous page)

filename: bytes &until=b"\x00"; # [4]
mode: bytes &until=b"\x00"; # [5]

on %done { print self; } # [6]
};

Let’s walk through:

• [1]All Spicy source files must start with a module line defining a namespace for their content. By convention,
the namespace should match what is being parsed, so we call ours TFTP. Naming our module TFTP also
implies saving it under the name tftp.spicy, so that other modules can find it through import TFTP;.
See Modules for more on all of this.

• [2] In Spicy, one will typically create a unit type for each of the main data units that a protocol defines. We
want to parse a Read Request, so we call our type accordingly. We declare it as public because we want to use
this unit as the starting point for parsing data. The following lines then lay out the elements of such a request in
the same order as the protocol defines them.

• [3] Per the TFTP specification, the first field contains the opcode as an integer value encoded over two bytes.
For multi-byte integer values, it is important to consider the byte order for parsing. TFTP uses network byte
order which matches Spicy’s default, so there is nothing else for us to do here. (If we had to specify the order,
we would add the &byte-order attribute).

• [4] The filename is a null-terminated byte sequence, which we can express directly as such in Spicy: The
filename field will accumulate bytes until a null byte is encountered. Note that even though the specification
of a Read Request shows the 0 as separate element inside the packet, we don’t create a field for it, but rather
exploit it as a terminator for the file name (which will not be included into the filename stored).

• [5] The mode operates just the same as the filename.

• [6] Once we are done parsing a Read Request, we print out the result for debugging.

We should now be able to parse a Read Request. To try it, we need the actual payload of a corresponding packet. With
TFTP, the format is simple enough that we can start by faking data with printf and pipe that into the Spicy tool
spicy-driver:

printf '\000\001rfc1350.txt\000octet\000' | spicy-driver tftp.spicy
[$opcode=1, $filename=b"rfc1350.txt", $mode=b"octet"]

Here, spicy-driver compiles our ReadRequest unit into an executable parser and then feeds it with the data it
is receiving on standard input. The output of spicy-driver is the result of our print statement executing at the
end.

What would we do with a more complex protocol where we cannot easily use printf to create some dummy pay-
load? We would probably have access to some protocol traffic in pcap traces, however we can’t just feed those into
spicy-driver directly as they will contain all the other network layers as well that our grammar does not handle
(e.g., IP and UDP). One way to test with a trace would be proceeding with Zeek integration at this point, so that we
could let Zeek strip off the base layers and then feed our parser only the TFTP payload. However, during development
it is often easier at first to extract application-layer protocol data from the traces ourselves, write it into files, and then
feed those files into spicy-driver.

We can leverage Zeek for doing this extraction into files. If we had a TCP-based protocol, doing so
would be trivial because Zeek has that functionality built in: When you run Zeek on a pcap trace and add
Conn::default_extract=T to the command line, it will write out all the TCP streams into individual files.
As TFTP is UDP-based, however, we will use a custom script, udp-contents.zeek. When you run Zeek with
that script on trace, you will get one file per UDP packet each containing the corresponding application-layer UDP
payload (make sure to use this with small traces only . . .).

20 Chapter 2. Documentation

https://en.wikipedia.org/wiki/Endianness#Networking
https://en.wikipedia.org/wiki/Endianness#Networking

Spicy, Release 1.4.0

Let’s use the UDP script with tftp_rrq.pcap, a tiny TFTP trace containing a single file download from Wire-
shark’s pcap archive. tcpdump shows us that the first packet indeed contains a Read Request:

tcpdump -ttnr tftp_rrq.pcap
1367411051.972852 IP 192.168.0.253.50618 > 192.168.0.10.69: 20 RRQ "rfc1350.txtoctet
→˓" [\|tftp]
1367411052.077243 IP 192.168.0.10.3445 > 192.168.0.253.50618: UDP, length 516
1367411052.081790 IP 192.168.0.253.50618 > 192.168.0.10.3445: UDP, length 4
[...]

Running Zeek on the trace with the udp-contents scripts produces the expected content files:

zeek -r tftp_rrq.pcap udp-contents
ls udp-contents.orig.*
udp-contents.orig.1367411051.972852.dat
udp-contents.orig.1367411052.077243.dat
udp-contents.orig.1367411052.086300.dat
udp-contents.orig.1367411052.088995.dat
udp-contents.orig.1367411052.091675.dat
[...]

Per the timestamps included with the names, the first file is the one containing our Read Request. We can pass that
into our Spicy parser:

cat udp-contents.orig.1367411051.972852.dat | spicy-driver tftp.spicy
[$opcode=1, $filename=b"rfc1350.txt", $mode=b"octet"]

That gives us an easy way to test our TFTP parser.

Generalizing to More Packet Types

So far we can parse a Read Request, but nothing else. In fact, we are not even examining the opcode yet at all to see
if our input actually is a Read Request. To generalize our grammar to other TFTP packet types, we will need to parse
the opcode on its own first, and then use the value to decide how to handle subsequent data. Let’s start over with a
minimal version of our TFTP grammar that looks at just the opcode:

module TFTP;

public type Packet = unit {
opcode: uint16;

on %done { print self; }
};

cat udp-contents.orig.1367411051.972852.dat | spicy-driver tftp.spicy
[$opcode=1]

Next we create a separate type to parse the fields that are specific to a Read Request:

type ReadRequest = unit {
filename: bytes &until=b"\x00";
mode: bytes &until=b"\x00";

};

We do not declare this type as public because we will use it only internally inside our grammar; it is not a top-level
entry point for parsing (that’s Packet now).

2.4. Tutorial: A Real Analyzer 21

https://wiki.wireshark.org/SampleCaptures#tftp
https://wiki.wireshark.org/SampleCaptures#tftp

Spicy, Release 1.4.0

Now we need to tie the two units together. We can do that by adding the ReadRequest as a field to the Packet,
which will let Spicy parse it as a sub-unit:

module TFTP;

public type Packet = unit {
opcode: uint16;
rrq: ReadRequest;

on %done { print self; }
};

cat udp-contents.orig.1367411051.972852.dat | spicy-driver tftp.spicy
[$opcode=1, $rrq=[$filename=b"rfc1350.txt", $mode=b"octet"]]

However, this does not help us much yet: it still resembles our original version in that it continues to hardcode one
specific packet type. But the direction of using sub-units is promising, we only need to instruct the parser to leverage
the opcode to decide what particular sub-unit to use. Spicy provides a switch construct for such dispatching:

module TFTP;

public type Packet = unit {
opcode: uint16;

switch (self.opcode) {
1 -> rrq: ReadRequest;

};

on %done { print self; }
};

cat udp-contents.orig.1367411051.972852.dat | spicy-driver tftp.spicy
[$opcode=1, $rrq=[$filename=b"rfc1350.txt", $mode=b"octet"]]

The self keyword always refers to the unit instance currently being parsed, and we use that to get to the opcode for
switching on. If it is 1, we descend down into a Read Request.

What happens if it is something other than 1? Let’s try it with the first server-side packet, which contains a TFTP
acknowledgment (opcode 4):

cat udp-contents.resp.1367411052.081790.dat | spicy-driver tftp.spicy
[fatal error] terminating with uncaught exception of type spicy::rt::ParseError:
→˓parse error: no matching case in switch statement (:7:5-9:7)

Of course it is now easy to add another unit type for handling such acknowledgments:

public type Packet = unit {
opcode: uint16;

switch (self.opcode) {
1 -> rrq: ReadRequest;
4 -> ack: Acknowledgement;

};

on %done { print self; }
};

(continues on next page)

22 Chapter 2. Documentation

Spicy, Release 1.4.0

(continued from previous page)

type Acknowledgement = unit {
num: uint16; # block number being acknowledged

};

cat udp-contents.resp.1367411052.081790.dat | spicy-driver tftp.spicy
[$opcode=4, $rrq=(not set), $ack=[$num=1]]

As expected, the output shows that our TFTP parser now descended into the ack sub-unit while leaving rrq unset.

TFTP defines three more opcodes for other packet types: 2 is a Write Request, 3 is file data being sent, and 5 is an
error. We will add these to our grammar as well, so that we get the whole protocol covered (please refer to the RFC
for specifics of each packet type):

module TFTP;

public type Packet = unit {
opcode: uint16;

switch (self.opcode) {
1 -> rrq: ReadRequest;
2 -> wrq: WriteRequest;
3 -> data: Data;
4 -> ack: Acknowledgement;
5 -> error: Error;

};

on %done { print self; }
};

type ReadRequest = unit {
filename: bytes &until=b"\x00";
mode: bytes &until=b"\x00";

};

type WriteRequest = unit {
filename: bytes &until=b"\x00";
mode: bytes &until=b"\x00";

};

type Data = unit {
num: uint16;
data: bytes &eod; # parse until end of data (i.e., packet) is reached

};

type Acknowledgement = unit {
num: uint16;

};

type Error = unit {
code: uint16;
msg: bytes &until=b"\x00";

};

This grammar works well already, but we can improve it a bit more.

2.4. Tutorial: A Real Analyzer 23

Spicy, Release 1.4.0

Using Enums

The use of integer values inside the switch construct is not exactly pretty: they are hard to read and maintain. We
can improve our grammar by using an enumerator type with descriptive labels instead. We first declare an enum type
that provides one label for each possible opcode:

type Opcode = enum { RRQ = 1, WRQ = 2, DATA = 3, ACK = 4, ERROR = 5 };

Now we can change the switch to look like this:

switch (self.opcode) {
Opcode::RRQ -> rrq: ReadRequest;
Opcode::WRQ -> wrq: WriteRequest;
Opcode::DATA -> data: Data;
Opcode::ACK -> ack: Acknowledgement;
Opcode::ERROR -> error: Error;
};

Much better, but there is a catch still: this will not compile because of a type mismatch. The switch cases’ expressions
have type Opcode, but self.opcode remains of type uint16. That is because Spicy cannot know on its own that
the integers we parse into opcode match the numerical values of the Opcode labels. But we can convert the former
into the latter explicitly by adding a &convert attribute to the opcode field:

public type Packet = unit {
opcode: uint16 &convert=Opcode($$);
...

};

This does two things:

1. Each time an uint16 gets parsed for this field, it is not directly stored in opcode, but instead first passed
through the expression that &convert specifies. Spicy then stores the result of that expression, potentially
adapting the field’s type accordingly. Inside the &convert expression, the parsed value is accessible through
the special identifier $$.

2. Our &convert expression passes the parsed integer into the constructor for the Opcode enumerator type,
which lets Spicy create an Opcode value with the label that corresponds to the integer value.

With this transformation, the opcode field now has type Opcode and hence can be used with our updated switch
statement. You can see the new type for opcode in the output as well:

cat udp-contents.orig.1367411051.972852.dat | spicy-driver tftp.spicy
[$opcode=Opcode::RRQ, $rrq=[$filename=b"rfc1350.txt", $mode=b"octet"], $wrq=(not set),
→˓ $data=(not set), $ack=(not set), $error=(not set)]

See On-the-fly Type Conversion with &convert for more on &convert, and Enum for more on the enum type.

Note: What happens when Opcode($$) receives an integer that does not correspond to any of the labels? Spicy
permits that and will substitute an implicitly defined Opcode::Undef label. It will also retain the actual integer
value, which can be recovered by converting the enum value back to an integer.

24 Chapter 2. Documentation

Spicy, Release 1.4.0

Using Unit Parameters

Looking at the two types ReadRequest and WriteRequest, we see that both are using exactly the same fields.
That means we do not really need two separate types here, and could instead define a single Request unit to cover
both cases. Doing so is straight-forward, except for one issue: when parsing such a Request, we would now lose the
information whether we are seeing read or a write operation. For our Zeek integration later it will be useful to retain
that distinction, so let us leverage a Spicy capability that allows passing state into a sub-unit: unit parameters. Here’s
the corresponding excerpt after that refactoring:

public type Packet = unit {
opcode: uint16 &convert=Opcode($$);

switch (self.opcode) {
Opcode::RRQ -> rrq: Request(True);
Opcode::WRQ -> wrq: Request(False);
...
};

on %done { print self; }
};

type Request = unit(is_read: bool) {
filename: bytes &until=b"\x00";
mode: bytes &until=b"\x00";

on %done { print "We got a %s request." % (is_read ? "read" : "write"); }
};

We see that the switch now passes either True or False into the Request type, depending on whether it is a
Read Request or Write Request. For demonstration, we added another print statement, so that we can see how that
boolean becomes available through the is_read unit parameter:

cat udp-contents.orig.1367411051.972852.dat | spicy-driver tftp.spicy
We got a read request.
[$opcode=Opcode::RRQ, $rrq=[$filename=b"rfc1350.txt", $mode=b"octet"], $wrq=(not set),
→˓ $data=(not set), $ack=(not set), $error=(not set)]

Admittedly, the unit parameter is almost overkill in this example, but it proves very useful in more complex grammars
where one needs access to state information, in particular also from higher-level units. For example, if the Packet
type stored additional state that sub-units needed access to, they could receive the Packet itself as a parameter.

Complete Grammar

Combining everything discussed so far, this leaves us with the following complete grammar for TFTP, including the
packet formats in comments as well:

Copyright (c) 2021 by the Zeek Project. See LICENSE for details.
#
Trivial File Transfer Protocol
#
Specs from https://tools.ietf.org/html/rfc1350

module TFTP;

Common header for all messages:
#

(continues on next page)

2.4. Tutorial: A Real Analyzer 25

Spicy, Release 1.4.0

(continued from previous page)

2 bytes

| TFTP Opcode |

public type Packet = unit { # public top-level entry point for parsing
op: uint16 &convert=Opcode($$);
switch (self.op) {

Opcode::RRQ -> rrq: Request(True);
Opcode::WRQ -> wrq: Request(False);
Opcode::DATA -> data: Data;
Opcode::ACK -> ack: Acknowledgement;
Opcode::ERROR -> error: Error;
};

};

TFTP supports five types of packets [...]:
#
opcode operation
1 Read request (RRQ)
2 Write request (WRQ)
3 Data (DATA)
4 Acknowledgment (ACK)
5 Error (ERROR)
type Opcode = enum {

RRQ = 0x01,
WRQ = 0x02,
DATA = 0x03,
ACK = 0x04,
ERROR = 0x05

};

Figure 5-1: RRQ/WRQ packet
#
2 bytes string 1 byte string 1 byte
--
| Opcode | Filename | 0 | Mode | 0 |
--

type Request = unit(is_read: bool) {
filename: bytes &until=b"\x00";
mode: bytes &until=b"\x00";

};

Figure 5-2: DATA packet
#
2 bytes 2 bytes n bytes

| Opcode | Block # | Data |

type Data = unit {
num: uint16;
data: bytes &eod;

};

Figure 5-3: ACK packet
(continues on next page)

26 Chapter 2. Documentation

Spicy, Release 1.4.0

(continued from previous page)

#
2 bytes 2 bytes

| Opcode | Block # |

type Acknowledgement = unit {
num: uint16;

};

Figure 5-4: ERROR packet
#
2 bytes 2 bytes string 1 byte

| Opcode | ErrorCode | ErrMsg | 0 |

type Error = unit {
code: uint16;
msg: bytes &until=b"\x00";

};

2.4.2 Zeek Integration

To turn the Spicy-side grammar into a Zeek analyzer, we need to provide Spicy’s Zeek plugin with a description of how
to employ it. There are two parts to that: Telling Zeek when to activate the analyzer, and defining events to generate.
In addition, we will need a Zeek-side script to do something with our new TFTP events. We will walk through this in
the following, starting with the mechanics of compiling the Spicy analyzer for Zeek.

Before proceeding, follow the instructions to install the Zeek plugin. You should now be seeing output similar to this:

zeek -NN _Zeek::Spicy
_Zeek::Spicy - Support for Spicy parsers (*.spicy, *.evt, *.hlto) (dynamic, version x.
→˓y.z)

You should also have spicyz in your PATH:

which spicyz
/usr/local/zeek/bin/spicyz

Note that you need a very recent version of zkg to get spicyz into your PATH automatically; refer to the plugin
instructions plugin for more.

Compiling the Analyzer

While the Spicy plugin for Zeek can compile Spicy code on the fly, it is usually more convenient to compile an
analyzer once upfront. Spicy comes with a tool spicyz for that. The following command line produces a binary object
file tftp.hlto containing the executable analyzer code:

spicyz -o tftp.hlto tftp.spicy

Below, we will prepare an additional interface definition file tftp.evt that describes the analyzer’s integration into
Zeek. We will need to give that to spicyz as well, and our full compilation command hence becomes:

2.4. Tutorial: A Real Analyzer 27

Spicy, Release 1.4.0

spicyz -o tftp.hlto tftp.spicy tftp.evt

When starting Zeek, we add tftp.hlto to its command line:

zeek -r tftp_rrq.pcap tftp.hlto

Note: If you get an error from Zeek here, see Installation to make sure the Spicy plugin is installed correctly.

Activating the Analyzer

In Getting Started, we already saw how to inform Zeek about a new protocol analyzer. We follow the same scheme
here and put the following into tftp.evt, the analyzer definition file:

Note: When line number changes in this file, update the documentation that pulls it
→˓in.

protocol analyzer spicy::TFTP over UDP:

The first line provides our analyzer with a Zeek-side name (spicy::TFTP) and also tells Zeek that we are adding
an application analyzer on top of UDP (over UDP). TFTP::Packet provides the top-level entry point for parsing
both sides of a TFTP connection. Furthermore, we want Zeek to automatically activate our analyzer for all sessions
on UDP port 69 (i.e., TFTP’s well known port). See Analyzer Setup for more details on defining such a protocol
analyzer section.

With this in place, we can already employ the analyzer inside Zeek. It will not generate any events yet, but we can at
least see the output of the on %done { print self; } hook that still remains part of the grammar from earlier:

zeek -r tftp_rrq.pcap tftp.hlto Spicy::enable_print=T
[$opcode=Opcode::RRQ, $rrq=[$filename=b"rfc1350.txt", $mode=b"octet"], $wrq=(not set),
→˓ $data=(not set), $ack=(not set), $error=(not set)]

As by default, the Zeek plugin does not show the output of Spicy-side print statements, we added
Spicy::enable_print=T to the command line to turn that on. We see that Zeek took care of the lower net-
work layers, extracted the UDP payload from the Read Request, and passed that into our Spicy parser. (If you want to
view more about the internals of what is happening here, there are a couple kinds of debug output available.)

You might be wondering why there is only one line of output, even though there are multiple TFTP packets in our pcap
trace. Shouldn’t the print execute multiple times? Yes, it should, but it does not currently: Due to some intricacies
of the TFTP protocol, our analyzer gets to see only the first packet for now. We will fix this later. For now, we focus
on the Read Request packet that the output above shows.

Defining Events

The core task of any Zeek analyzer is to generate events for Zeek scripts to process. For binary protocols, events will
often correspond pretty directly to data units specified by their specifications—and TFTP is no exception. We start
with an event for Read/Write Requests by adding this definition to tftp.evt:

import TFTP;

on TFTP::Request -> event tftp::request($conn);

The first line makes our Spicy TFTP grammar available to the rest of the file. The line on ... defines one event:
Every time a Request unit will be parsed, we want to receive an event tftp::request with one parameter: the

28 Chapter 2. Documentation

Spicy, Release 1.4.0

connection it belongs to. Here, $conn is a reserved identifier that will turn into the standard connection record record
on the Zeek side.

Now we need a Zeek event handler for our new event. Let’s put this into tftp.zeek:

event tftp::request(c: connection)
{
print "TFTP request", c$id;
}

Running Zeek then gives us:

spicyz -o tftp.hlto tftp.spicy tftp.evt
zeek -r tftp_rrq.pcap tftp.hlto tftp.zeek
TFTP request, [orig_h=192.168.0.253, orig_p=50618/udp, resp_h=192.168.0.10, resp_p=69/
→˓udp]

Let’s extend the event signature a bit by passing further arguments:

import TFTP;

on TFTP::Request -> event tftp::request($conn, $is_orig, self.filename, self.mode);

This shows how each parameter gets specified as a Spicy expression: self refers to the instance currently being
parsed (self), and self.filename retrieves the value of its filename field. $is_orig is another reserved ID
that turns into a boolean that will be true if the event has been triggered by originator-side traffic. On the Zeek side,
our event now has the following signature:

event tftp::request(c: connection, is_orig: bool, filename: string, mode: string)
{
print "TFTP request", c$id, is_orig, filename, mode;
}

spicyz -o tftp.hlto tftp.spicy tftp.evt
zeek -r tftp_rrq.pcap tftp.hlto tftp.zeek
TFTP request, [orig_h=192.168.0.253, orig_p=50618/udp, resp_h=192.168.0.10, resp_p=69/
→˓udp], T, rfc1350.txt, octet

Going back to our earlier discussion of Read vs Write Requests, we do not yet make that distinction with the request
event that we are sending to Zeek-land. However, since we had introduced the is_read unit parameter, we can easily
separate the two by gating event generation through an additional if condition:

import TFTP;

This now defines two separate events, each being generated only for the corresponding value of is_read. Let’s try
it with a new tftp.zeek:

event tftp::read_request(c: connection, is_orig: bool, filename: string, mode: string)
{
print "TFTP read request", c$id, is_orig, filename, mode;
}

event tftp::write_request(c: connection, is_orig: bool, filename: string, mode:
→˓string)

{
print "TFTP write request", c$id, is_orig, filename, mode;
}

2.4. Tutorial: A Real Analyzer 29

https://docs.zeek.org/en/current/scripts/base/init-bare.zeek.html#type-connection

Spicy, Release 1.4.0

spicyz -o tftp.hlto tftp.spicy tftp.evt
zeek -r tftp_rrq.pcap tftp.hlto tftp.zeek
TFTP read request, [orig_h=192.168.0.253, orig_p=50618/udp, resp_h=192.168.0.10, resp_
→˓p=69/udp], T, rfc1350.txt, octet

If we look at the conn.log that Zeek produces during this run, we will see that the service field is not filled in
yet. That’s because our analyzer does not yet confirm to Zeek that it has been successful in parsing the content. To
do that, we can extend our Spicy TFTP grammar to call two helper functions that the Spicy plugin makes available:
zeek::confirm_protocol once we have successfully parsed a request, and zeek::reject_protocol in
case we encounter a parsing error. While we could put this code right into tftp.spicy, we prefer to store it inside
separate Spicy file (zeek_tftp.spicy) because this is Zeek-specific logic:

module Zeek_TFTP;

import zeek; # Library module provided by the Spicy plugin for Zeek.
import TFTP;

on TFTP::Request::%done {
zeek::confirm_protocol();

}

on TFTP::Request::%error {
zeek::reject_protocol("error while parsing TFTP request");

}

spicyz -o tftp.hlto tftp.spicy zeek_tftp.spicy tftp.evt
zeek -r tftp_rrq.pcap tftp.hlto tftp.zeek
TFTP read request, [orig_h=192.168.0.253, orig_p=50618/udp, resp_h=192.168.0.10, resp_
→˓p=69/udp], T, rfc1350.txt, octet
cat conn.log
[...]
1367411051.972852 C1f7uj4uuv6zu2aKti 192.168.0.253 50618 192.168.0.10 69 udp
→˓spicy_tftp - - - S0 - -0 D 1 48 0 0 -
[...]

Now the service field says TFTP! (There will be a 2nd connection in the log that we are not showing here; see the next
section on that).

Turning to the other TFTP packet types, it is straight-forward to add events for them as well. The following is our
complete tftp.evt file:

Note: When line number changes in this file, update the documentation that pulls it
→˓in.

protocol analyzer spicy::TFTP over UDP:
parse with TFTP::Packet,
port 69/udp;

import TFTP;

on TFTP::Request if (is_read) -> event tftp::read_request($conn, $is_orig, self.
→˓filename, self.mode);
on TFTP::Request if (! is_read) -> event tftp::write_request($conn, $is_orig, self.
→˓filename, self.mode);

on TFTP::Data -> event tftp::data($conn, $is_orig, self.num, self.data);
on TFTP::Acknowledgement -> event tftp::ack($conn, $is_orig, self.num);

(continues on next page)

30 Chapter 2. Documentation

Spicy, Release 1.4.0

(continued from previous page)

on TFTP::Error -> event tftp::error($conn, $is_orig, self.code, self.msg);

Detour: Zeek vs. TFTP

We noticed above that Zeek seems to be seeing only a single TFTP packet from our input trace, even though tcpdump
shows that the pcap file contains multiple different types of packets. The reason becomes clear once we look more
closely at the UDP ports that are in use:

tcpdump -ttnr tftp_rrq.pcap
1367411051.972852 IP 192.168.0.253.50618 > 192.168.0.10.69: 20 RRQ "rfc1350.txtoctet
→˓" [tftp]
1367411052.077243 IP 192.168.0.10.3445 > 192.168.0.253.50618: UDP, length 516
1367411052.081790 IP 192.168.0.253.50618 > 192.168.0.10.3445: UDP, length 4
1367411052.086300 IP 192.168.0.10.3445 > 192.168.0.253.50618: UDP, length 516
1367411052.088961 IP 192.168.0.253.50618 > 192.168.0.10.3445: UDP, length 4
1367411052.088995 IP 192.168.0.10.3445 > 192.168.0.253.50618: UDP, length 516
[...]

Turns out that only the first packet is using the well-known TFTP port 69/udp, whereas all the subsequent packets use
ephemeral ports. Due to the port difference, Zeek believes it is seeing two independent network connections, and it
does not associate TFTP with the second one at all due to its lack of the well-known port (neither does tcpdump!).
Zeek’s connection log confirms this by showing two separate entries:

cat conn.log
1367411051.972852 CH3xFz3U1nYI1Dp1Dk 192.168.0.253 50618 192.168.0.10 69 udp
→˓spicy_tftp - - - S0 - - 0 D 1 48 0 0 -
1367411052.077243 CfwsLw2TaTIeo3gE9g 192.168.0.10 3445 192.168.0.253 50618 udp
→˓- 0.181558 24795 196 SF - - 0 Dd 49 26167 49 1568 -

Switching the ports for subsequent packets is a quirk in TFTP that resembles similar behaviour in standard FTP, where
data connections get set up separately as well. Fortunately, Zeek provides a built-in function to designate a specific
analyzer for an anticipated future connection. We can call that function when we see the initial request:

function schedule_tftp_analyzer(id: conn_id)
{
Schedule the TFTP analyzer for the expected next packet coming in on

→˓different
ports. We know that it will be exchanged between same IPs and reuse the
originator's port. "Spicy_TFTP" is the Zeek-side name of the TFTP analyzer
(generated from "Spicy::TFTP" in tftp.evt).
Analyzer::schedule_analyzer(id$resp_h, id$orig_h, id$orig_p, Analyzer::get_

→˓tag("Spicy_TFTP"), 1min);
}

event tftp::read_request(c: connection, is_orig: bool, filename: string, mode:
→˓string)

{
print "TFTP read request", c$id, filename, mode;
schedule_tftp_analyzer(c$id);
}

event tftp::write_request(c: connection, is_orig: bool, filename: string, mode:
→˓string)

{

(continues on next page)

2.4. Tutorial: A Real Analyzer 31

Spicy, Release 1.4.0

(continued from previous page)

print "TFTP write request", c$id, filename, mode;
schedule_tftp_analyzer(c$id);
}

Add handlers for other packet types so that we see their events being generated.
event tftp::data(c: connection, is_orig: bool, block_num: count, data: string)

{
print "TFTP data", block_num, data;
}

event tftp::ack(c: connection, is_orig: bool, block_num: count)
{
print "TFTP ack", block_num;
}

event tftp::error(c: connection, is_orig: bool, code: count, msg: string)
{
print "TFTP error", code, msg;
}

spicyz -o tftp.hlto tftp.spicy zeek_tftp.spicy tftp.evt
zeek -r tftp_rrq.pcap tftp.hlto tftp.zeek
TFTP read request, [orig_h=192.168.0.253, orig_p=50618/udp, resp_h=192.168.0.10, resp_
→˓p=69/udp], rfc1350.txt, octet
TFTP data, 1, \x0a\x0a\x0a\x0a\x0a\x0aNetwork Working Group [...]
TFTP ack, 1
TFTP data, 2, B Official Protocol\x0a Standards" for the [...]
TFTP ack, 2
TFTP data, 3, protocol was originally designed by Noel Chia [...]
TFTP ack, 3
TFTP data, 4, r mechanism was suggested by\x0a PARC's EFT [...]
TFTP ack, 4
[...]

Now we are seeing all the packets as we would expect.

Zeek Script

Analyzers normally come along with a Zeek-side script that implements a set of standard base functionality, such as
recording activity into a protocol specific log file. These scripts provide handlers for the analyzers’ events, and collect
and correlate their activity as desired. We have created such a script for TFTP, based on the events that our
Spicy analyzer generates. Once we add that to the Zeek command line, we will see a new tftp.log:

spicyz -o tftp.hlto tftp.spicy zeek_tftp.spicy tftp.evt
zeek -r tftp_rrq.pcap tftp.hlto tftp.zeek
cat tftp.log
#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p
→˓ wrq fname mode uid_data size block_sent block_acked
→˓ error_code error_msg
1367411051.972852 CKWH8L3AIekSHYzBU 192.168.0.253 50618 192.168.0.10
→˓69 F rfc1350.txt octet ClAr3P158Ei77Fql8h 24599 49 49
→˓ - -

The TFTP script also labels the second session as TFTP data by adding a corresponding entry to the service field
inside the Zeek-side connection record. With that, we are now seeing this in conn.log:

32 Chapter 2. Documentation

Spicy, Release 1.4.0

1367411051.972852 ChbSfq3QWKuNirt9Uh 192.168.0.253 50618 192.168.0.10 69 udp
→˓spicy_tftp - - - S0 - -0 D 1 48 0 0 -
1367411052.077243 CowFQj20FHHduhHSYk 192.168.0.10 3445 192.168.0.253 50618 udp
→˓spicy_tftp_data 0.181558 24795 196 SF -- 0 Dd 49 26167 49 1568 -

The TFTP script ends up being a bit more complex than one would expect for such a simple protocol. That’s because
it tracks the two related connections (initial request and follow-up traffic on a different port), and combines them into
a single TFTP transaction for logging. Since there is nothing Spicy-specific in that Zeek script, we skip discussing it
here in more detail.

2.4.3 Next Steps

This tutorial provides an introduction to the Spicy language and toolchain. Spicy’s capabilities go much further than
what we could show here. Some pointers for what to look at next:

• Programming in Spicy provides an in-depth discussion of the Spicy language, including in particular all the
constructs for parsing data and a reference of language elements. Note that most of Spicy’s types come with
operators and methods for operating on values. The Debugging section helps understanding Spicy’s operation
if results do not match what you would expect.

• Examples summarizes grammars coming with the Spicy distribution.

• Zeek Integration discusses Spicy’s integration into Zeek.

2.5 Programming in Spicy

This chapter summarizes the main concepts of writing Spicy grammars. We begin with a deep-dive on Spicy’s main
task, parsing: We walk through all the corresponding constructs & mechanisms available to grammar writers, without
paying too much attention to other specifics of the Spicy language, such as data types and control flow constructs.
Much of that should be sufficiently intuitive to readers familiar with standard scripting languages. However, once we
finish the parsing section, we follow up with a comprehensive overview of the Spicy language, as well as a reference
of pre-built library functionality that Spicy grammars can leverage.

2.5.1 Parsing

Basics

Type Declaration

Spicy expresses units of data to parse through a type called, appropriately, unit. At a high level, a unit is similar
to structs or records in other languages: It defines an ordered set of fields, each with a name and a type, that during
runtime will store corresponding values. Units can be instantiated, fields can be assigned values, and these values can
then be retrieved. Here’s about the most basic Spicy unit one can define:

type Foo = unit {
version: uint32;

};

We name the type Foo, and it has just one field called version, which stores a 32-bit unsigned integer type.

Leaving parsing aside for a moment, we can indeed use this type similar to a typical struct/record type:

2.5. Programming in Spicy 33

Spicy, Release 1.4.0

module Test;

type Foo = unit {
version: uint32;

};

global f: Foo;
f.version = 42;
print f;

This will print:

[$version=42]

Fields are initially unset, and attempting to read an unset field will trigger a runtime exception. You may, however,
provide a default value by adding a &default attribute to the field, in which case that will be returned on access if
no value has been explicitly assigned:

module Test;

type Foo = unit {
version: uint32 &default=42;

};

global f: Foo;
print f;
print "version is %s" % f.version;

This will print:

[$version=(not set)]
version is 42

Note how the field remains unset even with the default now specified, while the access returns the expected value.

Parsing a Field

We can turn this minimal unit type into a starting point for parsing data—in this case a 32-bit integer from four bytes
of raw input. First, we need to declare the unit as public to make it accessible from outside of the current module—a
requirement if a host application wants to use the unit as a parsing entry point.

module Test;

public type Foo = unit {
version: uint32;

on %done {
print "0x%x" % self.version;

}
};

Let’s use spicy-driver to parse 4 bytes of input through this unit:

printf '\01\02\03\04' | spicy-driver foo.spicy
0x1020304

34 Chapter 2. Documentation

Spicy, Release 1.4.0

The output comes of course from the print statement inside the %done hook, which executes once the unit has been
fully parsed. (We will discuss unit hooks further below.)

By default, Spicy assumes integers that it parses to be represented in network byte order (i.e., big-endian), hence the
output above. Alternatively, we can tell the parser through an attribute that our input is arriving in, say, little-endian
instead. To do that, we import the spicy library module, which provides an enum type spicy::ByteOrder that we can
give to a &byte-order field attribute for fields that support it:

module Test;

import spicy;

public type Foo = unit {
version: uint32 &byte-order=spicy::ByteOrder::Little;

on %done {
print "0x%x" % self.version;

}
};

printf '\01\02\03\04' | spicy-driver foo.spicy
0x4030201

We see that unpacking the value has now flipped the bytes before storing it in the version field.

Similar to &byte-order, Spicy offers a variety of further attributes that control the specifics of how fields are parsed.
We’ll discuss them in the relevant sections throughout the rest of this chapter.

Non-type Fields

Unit fields always have a type. However, in some cases a field’s type is not explicitly declared, but derived from what’s
being parsed. The main example of this is parsing a constant value: Instead of a type, a field can specify a constant of
a parseable type. The field’s type will then (usually) just correspond to the constant’s type, and parsing will expect to
find the corresponding value in the input stream. If a different value gets unpacked instead, parsing will abort with an
error. Example:

module Test;

public type Foo = unit {
bar: b"bar";
on %done { print self.bar; }

};

printf 'bar' | spicy-driver foo.spicy
bar

printf 'foo' | spicy-driver foo.spicy
[fatal error] terminating with uncaught exception of type spicy::rt::ParseError:
→˓parse error: expecting 'bar' (foo.spicy:5)

Regular expressions extend this scheme a bit further: If a field specifies a regular expression constant rather than a
type, the field will have type Bytes and store the data that ends up matching the regular expression:

module Test;

(continues on next page)

2.5. Programming in Spicy 35

Spicy, Release 1.4.0

(continued from previous page)

public type Foo = unit {
x: /Foo.*Bar/;
on %done { print self; }

};

printf 'Foo12345Bar' | spicy-driver foo.spicy
[$x=b"Foo12345Bar"]

There’s also a programmatic way to change a field’s type to something that’s different than what’s being parsed, see
the &convert attribute.

Parsing Fields With Known Size

You can limit the input that a field receives by attaching a &size=EXPR attribute that specifies the number of raw
bytes to make available. This works on top of any other attributes that control the field’s parsing. From the field’s
perspective, such a size limit acts just like reaching the end of the input stream at the specified position. Example:

module Test;

public type Foo = unit {
x: int16[] &size=6;
y: bytes &eod;
on %done { print self; }

};

printf '\000\001\000\002\000\003xyz' | spicy-driver foo.spicy
[$x=[1, 2, 3], $y=b"xyz"]

As you can see, x receives 6 bytes of input, which it then turns into three 16-bit integers.

Normally, the field must consume all the bytes specified by &size, otherwise a parse error will be triggered. Some
types support an additional &eod attribute to lift this restrictions; we discuss that in the corresponding type’s section
where applicable.

After a field with a &size=EXPR attribute, parsing will always move ahead the full amount of bytes, even if the field
did not consume them all.

Todo: Parsing a regular expression would make a nice example for &size as well.

Defensively Limiting Input Size

On their own, parsers place no intrinsic upper limit on the size of variable-size fields or units. This can have negative
effects like out-of-memory errors, e.g., when available memory is constrained, or for malformed input.

As a defensive mechanism you can put an upper limit on the data a field or unit receives by attaching a
&max-size=EXPR attribute where EXPR is an unsigned integer specifying the upper limit of number of raw bytes a
field or unit should receive. If more than &max-size bytes are consumed during parsing, an error will be triggered.
This attribute works on top of any other attributes that control parsing. Example:

module Test;

(continues on next page)

36 Chapter 2. Documentation

Spicy, Release 1.4.0

(continued from previous page)

public type Foo = unit {
x: bytes &until=b"\x00" &max-size=1024;
on %done { print self; }

};

printf '\001\002\003\004\005\000' | spicy-driver foo.spicy
[$x=b"\x01\x02\x03\x04\x05"]

Here x will parse a NULL-terminated byte sequence (excluding the terminating NULL), but never more than 1024
bytes.

&max-size cannot be combined with &size.

Anonymous Fields

Field names are optional. If skipped, the field becomes an anonymous field. These still participate in parsing as any
other field, but they won’t store any value, nor is there a way to get access to them from outside. You can however
still get to the parsed value inside a corresponding field hook (see Unit Hooks) using the reserved $$ identifier (see
Reserved Identifiers).

module Test;

public type Foo = unit {
x: int8;
: int8 { print $$; } # anonymous field

y: int8;
on %done { print self; }

};

printf '\01\02\03' | spicy-driver foo.spicy
2
[$x=1, $y=3]

Reserved Identifiers

Inside units, two reserved identifiers provide access to values currently being parsed:

self Inside a unit’s type definition, self refers to the unit instance that’s currently being processed. The instance
is writable and maybe modified by assigning to any fields of self.

$$ Inside field attributes and hooks, $$ refers to the just parsed value, even if it’s not going to be directly stored in
the field. The value of $$ is writable and may be modified.

2.5. Programming in Spicy 37

Spicy, Release 1.4.0

On-the-fly Type Conversion with &convert

Fields may use an attribute &convert=EXPR to transform the value that was just being parsed before storing it as
the field’s final value. With the attribute being present, it’s the value of EXPR that’s stored in the field, not the parsed
value. Accordingly, the field’s type also changes to the type of EXPR.

Typically, EXPR will use $$ to access the value actually being parsed and then transform it into the desired represen-
tation. For example, the following stores an integer parsed in an ASCII representation as a uint64:

module Test;

import spicy;

public type Foo = unit {
x: bytes &eod &convert=$$.to_uint();
on %done { print self; }

};

printf 12345 | spicy-driver foo.spicy
[$x=12345]

&convert also works at the unit level to transform a whole instance into a different value after it has been parsed:

module Test;

type Data = unit {
data: bytes &size=2;

} &convert=self.data.to_int();

public type Foo = unit {
numbers: Data[];

on %done { print self.numbers; }
};

printf 12345678 | spicy-driver foo.spicy
[12, 34, 56, 78]

Note how the Data instances have been turned into integers. Without the &convert attribute, the output would have
looked like this:

[[$data=b"12"], [$data=b"34"], [$data=b"56"], [$data=b"78"]]

Enforcing Parsing Constraints

Fields may use an attribute &requires=EXPR to enforce additional constraints on their values. EXPR must be a
boolean expression that will be evaluated after the parsing for the field has finished, but before any hooks execute. If
EXPR returns False, the parsing process will abort with an error, just as if the field had been unparsable in the first
place (incl. executing any %error hooks). EXPR has access to the parsed value through $$. It may also retrieve the
field’s final value through self.<field>, which can be helpful when &convert is present.

Example:

module Test;

(continues on next page)

38 Chapter 2. Documentation

Spicy, Release 1.4.0

(continued from previous page)

import spicy;

public type Foo = unit {
x: int8 &requires=($$ < 5);
on %done { print self; }

};

printf '\001' | spicy-driver foo.spicy
[$x=1]

printf '\010' | spicy-driver foo.spicy
[fatal error] terminating with uncaught exception of type spicy::rt::ParseError:
→˓parse error: &required failed ($$ == 8) (foo.spicy:7:13)

One can also enforce conditions globally at the unit level through a attribute &requires = EXPR. EXPR will be
evaluated once the unit has been fully parsed, but before any %done hook executes. If EXPR returns False, the
unit’s parsing process will abort with an error. As usual, EXPR has access to the parsed instance through self. More
than one &requires attribute may be specified.

Example:

module Test;

import spicy;

public type Foo = unit {
x: int8;
on %done { print self; }

} &requires = self.x < 5;

printf '\001' | spicy-driver foo.spicy
[$x=1]

printf '\010' | spicy-driver foo.spicy
[error] terminating with uncaught exception of type spicy::rt::ParseError: parse
→˓error: &requires failed (foo.spicy:9:15)

Unit Hooks

Unit hooks provide one of the most powerful Spicy tools to control parsing, track state, and retrieve results. Generally,
hooks are blocks of code triggered to execute at certain points during parsing, with access to the current unit instance.

Conceptually, unit hooks are somewhat similar to methods: They have bodies that execute when triggered, and these
bodies may receive a set of parameters as input. Different from functions, however, a hook can have more than one
body. If multiple implementations are provided for the same hook, all of them will execute successively. A hook may
also not have any body implemented at all, in which case there’s nothing to do when it executes.

The most commonly used hooks are:

on %init() { ... } Executes just before unit parsing will start.

on %done { ... } Executes just after unit parsing has completed successfully.

on %error { ... } Executes when a parse error has been encountered, just before the parser either aborts pro-
cessing.

2.5. Programming in Spicy 39

Spicy, Release 1.4.0

on %finally { ... } Executes once unit parsing has completed in any way. This hook is most useful to modify
global state that needs to be updated no matter the success of the parsing process. Once %init triggers, this hook
is guaranteed to eventually execute as well. It will run after either %done or %error, respectively. (If a new
error occurs during execution of %finally, that will not trigger the unit’s %error hook.)

on %print { ... } Executes when a unit is about to be printed (and more generally: when rendered into a string
representation). By default, printing a unit will produce a list of its fields with their current values. Through this
hook, a unit can customize its appearance by returning the desired string.

on <field name> { ... } (field hook) Executes just after the given unit field has been parsed. The parsed
value is accessible through the $$, potentially with any relevant type conversion applied (see On-the-fly Type
Conversion with &convert). The same will also have been assigned to the field already.

on <field name> foreach { ... } (container hook) Assuming the specified field is a container (e.g., a
vector), this executes each time a new container element has been parsed, and just before it’s been added to the
container. The parsed element is accessible through the $$ identifier, and can be modified before it’s stored. The
hook implementation may also use the stop statement to abort container parsing, without the current element
being added anymore.

In addition, Spicy provides a set of hooks specific to the sink type which are discussed in the section on sinks, and
hooks which are executed during error recovery.

There are three locations where hooks can be implemented:

• Inside a unit, on <hook name> { ... } implements the hook of the given name:

type Foo = unit {
x: uint32;
v: uint8[];

on %init { ... }
on x { ... }
on v foreach { ... }
on %done { ... }

}

• Field and container hooks may be directly attached to their field, skipping the on ... part:

type Foo = unit {
x: uint32 { ... }
v: uint8[] foreach { ... }

}

• At the global module level, one can add hooks to any available unit type through on <unit type>::<hook
name> { ... }. With the definition of Foo above, this implements hooks externally:

on Foo::%init { ... }
on Foo::x { ... }
on Foo::v foreach { ... }
on Foo::%done { ... }

External hooks work across module boundaries by qualifying the unit type accordingly. They provide a powerful
mechanism to extend a predefined unit without changing any of its code.

If multiple implementations are provided for the same hook, by default it remains undefined in which order they will
execute. If a particular order is desired, you can specify priorities for your hook implementations:

on Foo::v priority=5 { ... }
on Foo::v priority=-5 { ... }

40 Chapter 2. Documentation

Spicy, Release 1.4.0

Implementations then execute in order of their priorities: The higher a priority value, the earlier it will execute. If not
specified, a hook’s priority is implicitly taken as zero.

Note: When a hook executes, it has access to the current unit instance through the self identifier. The state of that
instance will reflect where parsing is at that time. In particular, any field that hasn’t been parsed yet, will remain unset.
You can use the ?. unit operator to test if a field has received a value yet.

Unit Variables

In addition to unit field for parsing, you can also add further instance variables to a unit type to store arbitrary state:

module Test;

public type Foo = unit {
on %init { print self; }
x: int8 { self.a = "Our integer is %d" % $$; }
on %done { print self; }

var a: string;
};

printf \05 | spicy-driver foo.spicy
[$x=(not set), $a=""]
[$x=48, $a="Our integer is 48"]

Here, we assign a string value to a once we have parsed x. The final print shows the expected value. As you can
also see, before we assign anything, the variable’s value is just empty: Spicy initializes unit variables with well-defined
defaults. If you would rather leave a variable unset by default, you can add &optional:

module Test;

public type Foo = unit {
on %init { print self; }
x: int8 { self.a = "Our integer is %d" % $$; }
on %done { print self; }

var a: string &optional;
};

printf \05 | spicy-driver foo.spicy
[$x=(not set), $a=(not set)]
[$x=48, $a="Our integer is 48"]

You can use the ?. unit operator to test if an optional unit variable remains unset.

Unit variables can also be initialized with custom expressions when being defined. The initialization is performed just
before the containing unit starts parsing (implying that the expressions cannot access parse results of the unit itself yet)

module Test;

public type Foo = unit {
x: int8;
var a: int8 = 123;
on %done { print self; }

};

2.5. Programming in Spicy 41

Spicy, Release 1.4.0

printf \05 | spicy-driver foo.spicy
[$x=48, $a=123]

Unit Parameters

Unit types can receive parameters upon instantiation, which will then be available to any code inside the type’s decla-
ration:

module Test;

type Bar = unit(msg: string, mult: int8) {
x: int8 &convert=($$ * mult);
on %done { print "%s: %d" % (msg, self.x); }

};

public type Foo = unit {
y: Bar("My multiplied integer", 5);

};

printf '\05' | spicy-driver foo.spicy
My multiplied integer: 25

This example shows a typical idiom: We’re handing parameters down to a subunit through parameters it receives.
Inside the submodule, we then have access to the values passed in.

Note: It’s usually not very useful to define a top-level parsing unit with parameters because we don’t have a way to
pass anything in through spicy-driver. A custom host application could make use of them, though.

This works with subunits inside containers as well:

module Test;

type Bar = unit(mult: int8) {
x: int8 &convert=($$ * mult);
on %done { print self.x; }

};

public type Foo = unit {
x: int8;
y: Bar(self.x)[];

};

printf '\05\01\02\03' | spicy-driver foo.spicy
5
10
15

Unit parameters follow the same passing conventions as function parameters. In particular, they are read-only by
default. If the subunit wants to modify a parameter it receives, it needs to be declared as inout (e.g., Bar(inout
foo: Foo)

Note: inout parameters need to be reference types which holds for other units types, but currently not for basic
types (#674). In order to pass a basic type as unit parameter it needs to be declared as a reference (e.g., string&)

42 Chapter 2. Documentation

https://github.com/zeek/spicy/issues/674

Spicy, Release 1.4.0

and explicitly wrapped when being set:

module Test;

type X = unit(inout msg: string&) {
n : uint8 {

local s = "Parsed %d" % $$;
msg = new s;

}
};

global msg = new "Nothing parsed, yet";

public type Y = unit {
x: X(msg);
on %done { print msg; }

};

printf '\x2a' | spicy-driver foo.spicy
Parsed 42

Note: A common use-case for unit parameters is passing the self of a higher-level unit down into a subunit:

type Foo = unit {
...
b: Bar(self);
...

}

type Bar = unit(foo: Foo) {
We now have access to any state in "foo".

}

That way, the subunit can for example store state directly in the parent.

Unit Attributes

Unit types support the following type attributes:

&byte-order=ORDER Specifies a byte order to use for parsing the unit where ORDER is of type spicy::ByteOrder.
This overrides the byte order specified for the module. Individual fields can override this value by specifying
their own byte-order. Example:

type Foo = unit {
version: uint32;

} &byte-order=spicy::ByteOrder::Little;

&convert=EXPR Replaces a unit instance with the result of the expression EXPR after parsing it from inside a
parent unit. See On-the-fly Type Conversion with &convert for an example. EXPR has access to self to
retrieves state from the unit.

&requires=EXPR

2.5. Programming in Spicy 43

Spicy, Release 1.4.0

Enforces post-conditions on the parsed unit. EXPR must be a boolean expression that will be eval-
uated after the parsing for the unit has finished, but before any hooks execute. More than one
&requires attributes may be specified. Example:

type Foo = unit {
a: int8;
b: int8;

} &requires=self.a==self.b;

See the section on parsing constraints for more details.

&size=N Limits the unit’s input to N bytes, which it must fully consume. Example:

type Foo = unit {
a: int8;
b: bytes &eod;

} &size=5;

This expects 5 bytes of input when parsing an instance of Foo. The unit will store the first byte into a, and then
fill b with the remaining 4 bytes.

The expression N has access to self as well as to the unit’s parameters.

Meta data

Units can provide meta data about their semantics through properties that both Spicy itself and host applications can
access. One defines properties inside the unit’s type through either a %<property> = <value>; tuple, or just
as %<property>; if the property does not take an argument. Currently, units support the following meta data
properties:

%mime-type = STRING A string of the form "<type>/<subtype>" that defines the MIME type for content
the unit knows how to parse. This may include a * wildcard for either the type or subtype. We use a generalized
notion of MIME types here that can include custom meanings. See Sinks for more on how these MIME types
are used to select parsers dynamically during runtime.

You can specify this property more than once to associate a unit with multiple types.

%description = STRING A short textual description of the unit type (i.e., the parser that it defines). Host
applications have access to this property, and spicy-driver includes the information into the list of available
parsers that it prints with the --list-parsers option.

%port = PORT_VALUE [&originator|&responder] A Port to associate this unit with, optionally includ-
ing a direction to limit its use to the corresponding side. This property has no built-in effect, but host applications
may make use of the information to decide which unit type to use for parsing a connection’s payload.

%skip = (REGEXP | Null); Specifies a pattern which should be skipped when encountered in the input
stream in between parsing of unit fields. This overwrites a value set at the module level; use Null to reset the
property, i.e., not skip anything.

%skip-pre = (REGEXP | Null); Specifies a pattern which should be skipped when encountered in the
input stream before parsing of a unit begins. This overwrites a value set at the module level; use Null to reset
the property, i.e., not skip anything.

%skip-post = (REGEXP | Null); Specifies a pattern which should be skipped when encountered in the
input stream after parsing of a unit has finished. This overwrites a value set at the module level; use Null to
reset the property, i.e., not skip anything.

Units support some further properties for other purposes, which we introduce in the corresponding sections.

44 Chapter 2. Documentation

Spicy, Release 1.4.0

Parsing Types

Several, but not all, of Spicy’s data types can be parsed from binary data. In the following we summarize the types
that can, along with any options they support to control specifics of how they unpack binary representations.

Address

Spicy parses addresses from either 4 bytes of input for IPv4 addresses, or 16 bytes for IPv6 addresses. To select the
type, a unit field of type addr must come with either an &ipv4 or &ipv6 attribute.

By default, addresses are assumed to be represented in network byte order. Alternatively, a different byte order can be
specified through a &byte-order attribute specifying the desired spicy::ByteOrder.

Example:

module Test;

import spicy;

public type Foo = unit {
ip: addr &ipv6 &byte-order=spicy::ByteOrder::Little;
on %done { print self; }

};

printf '1234567890123456' | spicy-driver foo.spicy
[$ip=3635:3433:3231:3039:3837:3635:3433:3231]

Bitfield

Bitfields parse an integer value of a given size, and then make selected smaller bit ranges within that value available
individually through dedicated identifiers. For example, the following unit parses 4 bytes as an uint32 and then
makes the value of bit 0 available as f.x1, bits 1 to 2 as f.x2, and bits 3 to 5 as f.x3, respectively:

module Test;

public type Foo = unit {
f: bitfield(32) {

x1: 0;
x2: 1..2;
x3: 3..4;

};

on %done {
print self.f.x1, self.f.x2, self.f.x3;
print self;

}
};

printf '\01\02\03\04' | spicy-driver foo.spicy
0, 2, 0
[$f=(0, 2, 0)]

Generally, a field bitfield(N) field is parsed like an uint<N>. The field then supports dereferencing individual
bit ranges through their labels. The corresponding expressions (self.x.<id>) have the same uint<N> type as

2.5. Programming in Spicy 45

Spicy, Release 1.4.0

the parsed value itself, with the value shifted to the right so that the lowest extracted bit becomes bit 0 of the returned
value. As you can see in the example, the type of the field itself becomes a tuple composed of the values of the
individual bit ranges.

By default, a bitfield assumes the underlying integer comes in network byte order. You can specify a &byte-order
attribute to change that (e.g., bitfield(32) { ... } &byte-order=spicy::ByteOrder::Little).
Furthermore, each bit range can also specify a &bit-order attribute to specify the ordering for its bits; the default
is spicy::BitOrder::LSB0.

The individual bit ranges support the &convert attribute and will adjust their types accordingly, just like a regular
unit field (see On-the-fly Type Conversion with &convert). For example, that allows for mapping a bit range to an
enum, using $$ to access the parsed value:

module Test;

import spicy;

type X = enum { A = 1, B = 2 };

public type Foo = unit {
f: bitfield(8) {

x1: 0..3 &convert=X($$);
x2: 4..7 &convert=X($$);

} { print self.f.x1, self.f.x2; }
};

printf '\41' | spicy-driver foo.spicy
X::A, X::B

Bytes

When parsing a field of type Bytes, Spicy will consume raw input bytes according to a specified attribute that deter-
mines when to stop. The following attributes are supported:

&eod Consumes all subsequent data until the end of the input is reached.

&size=N Consumes exactly N bytes. The attribute may be combined with &eod to consume up to N bytes instead
(i.e., permit running out of input before the size limit is reached).

(This attribute works for fields of all types. We list it here because it’s particularly common to use it with bytes.)

&until=DELIM Consumes bytes until the specified delimiter is found. DELIM must be of type bytes itself. The
delimiter will not be included into the resulting value.

&until-including=DELIM Similar to &until, but this does include the delimiter DELIM into the resulting
value.

One of these attributes must be provided.

On top of that, bytes fields support the attribute &chunked to change how the parsed data is processed and stored.
Normally, a bytes field will first accumulate all desired data and then store the final, complete value in the field. With
&chunked, if the data arrives incrementally in pieces, the field instead processes just whatever is available at a time,
storing each piece directly, and individually, in the field. Each time a piece gets stored, any associated field hooks
execute with the new part as their $$. Parsing with &chunked will eventually still consume the same number of
bytes overall, but it avoids buffering everything in cases where that’s either infeasible or simply not not needed.

Bytes fields support parsing constants: If a bytes constant is specified instead of a field type, parsing will expect to
find the corresponding value in the input stream.

46 Chapter 2. Documentation

Spicy, Release 1.4.0

Integer

Fields of integer type can be either signed (intN) or unsigned (uintN). In either case, the bit length N determines
the number of bytes being parsed. By default, integers are expected to come in network byte order. You can specify a
different order through the &byte-order=ORDER attribute, where ORDER is of type spicy::ByteOrder.

Integer fields support parsing constants: If an integer constant is specified instead the instead of a field type, parsing
will expect to find the corresponding value in the input stream. Since the exact type of the integer constant is important,
you should use their constructor syntax to make that explicit (e.g., uint32(42), int8(-1); vs. using just 42 or
-1).

Real

Real values are parsed as either single or double precision values in IEEE754 format, depending on the value of their
&type=T attribute, where T is one of spicy::RealType.

Regular Expression

When parsing a field through a Regular Expression, the expression is expected to match at the current position of the
input stream. The field’s type becomes bytes, and it will store the matching data.

Inside hooks for fields with regular expressions, you can access capture groups through $1, $2, $3, etc. For example:

x : /(a.c)(de*f)(h.j)/ {
print $1, $2, $3;
}

This will print out the relevant pieces of the data matching the corresponding set of parentheses. (There’s no $0, just
use $$ as normal to get the full match.)

Matching an regular expression is more expensive if you need it to capture groups. If are using groups inside your
expression but don’t need the actual captures, add &nosub to the field to remove that overhead.

Unit

Fields can have the type of another unit, in which case parsing will descend into that subunit’s grammar until that
instance has been fully parsed. Field initialization and hooks work as usual.

If the subunit receives parameters, they must be given right after the type.

module Test;

type Bar = unit(a: string) {
x: uint8 { print "%s: %u" % (a, self.x); }

};

public type Foo = unit {
y: Bar("Spicy");
on %done { print self; }

};

printf '\01\02' | spicy-driver foo.spicy
Spicy: 1
[$y=[$x=1]]

2.5. Programming in Spicy 47

Spicy, Release 1.4.0

See Unit Parameters for more.

Vector

Parsing a vector creates a loop that repeatedly parses elements of the specified type from the input stream until an end
condition is reached. The field’s value accumulates all the elements into the final vector.

Spicy uses a specific syntax to define fields of type vector:

NAME : ELEM_TYPE[SIZE]

NAME is the field name as usual. ELEM_TYPE is type of the vector’s elements, i.e., the type that will be repeatedly
parsed. SIZE is the number of elements to parse into the vector; this is an arbitrary Spicy expression yielding an
integer value. The resulting field type then will be vector<ELEM_TYPE>. Here’s a simple example parsing five
uint8:

module Test;

public type Foo = unit {
x: uint8[5];
on %done { print self; }

};

printf '\01\02\03\04\05' | spicy-driver foo.spicy
[$x=[1, 2, 3, 4, 5]]

It is possible to skip the SIZE (e.g., x: uint8[]) and instead use another kind of end conditions to terminate a
vector’s parsing loop. To that end, vectors support the following attributes:

&eod Parses elements until the end of the input stream is reached.

&size=N Parses the vector from the subsequent N bytes of input data. This effectively limits the available input to
the corresponding window, letting the vector parse elements until it runs out of data. (This attribute works for
fields of all types. We list it here because it’s particularly common to use it with vectors.)

&until=EXPR Vector elements are parsed in a loop with EXPR being evaluated as a boolean expression after each
parsed element, and before adding the element to the vector. Once EXPR evaluates to true, parsing stops without
adding the element that was just parsed.

&until-including=EXPR Similar to &until, but does include the final element EXPR into the field’s vector
when stopping parsing.

&while=EXPR Continues parsing as long as the boolean expression EXPR evaluates to true.

If neither a size nor an attribute is given, Spicy will attempt to use look-ahead parsing to determine the end of the
vector based on the next expected token. Depending on the unit’s field, this may not be possible, in which case Spicy
will decline to compile the unit.

The syntax shown above generally works for all element types, including subunits (e.g., x: MyUnit[]).

Note: The x: (<T>)[] syntax is quite flexible. In fact, <T> is not limited to subunits, but allows for any standard
field specification defining how to parse the vector elements. For example, x: (bytes &size=5)[]; parses a
vector of 5-character bytes instances.

When parsing a vector, Spicy supports using a special kind of field hook, foreach, that executes for each parsed
element individually. Inside that hook, $$ refers to the just parsed element:

48 Chapter 2. Documentation

Spicy, Release 1.4.0

module Test;

public type Foo = unit {
x: uint8[5] foreach { print $$, self.x; }

};

printf '\01\02\03\04\05' | spicy-driver foo.spicy
1, []
2, [1]
3, [1, 2]
4, [1, 2, 3]
5, [1, 2, 3, 4]

As you can see, when a foreach hook executes the element has not yet been added to the vector. You may indeed use
a stop statement inside a foreach hook to abort the vector’s parsing without adding the current element anymore.
See Unit Hooks for more on hooks.

Void

The Void type can be used as a place-holder for not storing any data. By default void fields do not consume any data,
and while not very useful for normal fields, this allows branches in switch constructs to forego any parsing.

If a non-zero &size is specified, the given number of bytes of input data are consumed. This allows skipping over
data without storing their result:

module Test;

public type Foo = unit {
: void &size=2;
x: uint8;

on %done { print self; }
};

printf '\01\02\03' | spicy-driver foo.spicy
[$x=3]

A void field can also terminate through an &until=<BYTES> attribute: it then skips all input data until the given
deliminator sequence of bytes is encountered. The deliminator is extracted from the stream before parsing continues.

Finally, a void field can specify &eod to consume all data until the end of the current input.

void fields cannot have names.

Controlling Parsing

Spicy offers a few additional constructs inside a unit’s declaration for steering the parsing process. We discuss them
in the following.

2.5. Programming in Spicy 49

Spicy, Release 1.4.0

Conditional Parsing

A unit field may be conditionally skipped for parsing by adding an if (COND) clause, where COND is a boolean
expression. The field will be only parsed if the expression evaluates to true at the time the field is next in line.

module Test;

public type Foo = unit {
a: int8;
b: int8 if (self.a == 1);
c: int8 if (self.a % 2 == 0);
d: int8;

on %done { print self; }
};

printf '\01\02\03\04' | spicy-driver foo.spicy
[$a=1, $b=2, $c=(not set), $d=3]

printf '\02\02\03\04' | spicy-driver foo.spicy
[$a=2, $b=(not set), $c=2, $d=3]

Look-Ahead

Internally, Spicy builds an LR(1) grammar for each unit that it parses, meaning that it can actually look ahead in the
parsing stream to determine how to process the current input location. Roughly speaking, if (1) the current construct
does not have a clear end condition defined (such as a specific length), and (2) a specific value is expected to be found
next; then the parser will keep looking for that value and end the current construct once it finds it.

“Construct” deliberately remains a bit of a fuzzy term here, but think of vector parsing as the most common instance
of this: If you don’t give a vector an explicit termination condition (as discussed in Vector), Spicy will look at what’s
expected to come after the container. As long as that’s something clearly recognizable (e.g., a specific value of an
atomic type, or a match for a regular expression), it’ll terminate the vector accordingly.

Here’s an example:

module Test;

public type Foo = unit {
data: uint8[];

: /EOD/;
x : int8;

on %done { print self; }
};

printf '\01\02\03EOD\04' | spicy-driver foo.spicy
[$data=[1, 2, 3], $x=4]

For vectors, Spicy attempts look-ahead parsing automatically as a last resort when it doesn’t find more explicit instruc-
tions. However, it will reject a unit if it can’t find a suitable look-ahead symbol to work with. If we had written int32
in the example above, that would not have worked as the parser can’t recognize when there’s a int32 coming; it
would need to be a concrete value, such as int32(42).

See the switch construct for another instance of look-ahead parsing.

50 Chapter 2. Documentation

Spicy, Release 1.4.0

switch

Spicy supports a switch construct as way to branch into one of several parsing alternatives. There are two variants
of this, an explicit branch and one driving by look-ahead:

Branch by expression

The most basic form of switching by expression looks like this:

switch (EXPR) {
VALUE_1 -> FIELD_1;
VALUE_2 -> FIELD_2;
...
VALUE_N -> FIELD_N;

};

This evaluates EXPR at the time parsing reaches the switch. If there’s a VALUE matching the result, parsing contin-
ues with the corresponding field, and then proceeds with whatever comes after the switch. Example:

module Test;

public type Foo = unit {
x: bytes &size=1;
switch (self.x) {

b"A" -> a8: int8;
b"B" -> a16: int16;
b"C" -> a32: int32;

};

on %done { print self; }
};

printf 'A\01' | spicy-driver foo.spicy
[$x=b"A", $a8=1, $a16=(not set), $a32=(not set)]

printf 'B\01\02' | spicy-driver foo.spicy
[$x=b"B", $a8=(not set), $a16=258, $a32=(not set)]

We see in the output that all of the alternatives turn into normal unit members, with all but the one for the branch that
was taken left unset.

If none of the values match the expression, that’s considered a parsing error and processing will abort. Alternative, one
can add a default alternative by using * as the value. The branch will then be taken whenever no other value matches.

A couple additional notes about the fields inside an alternative:

• In our example, the fields of all alternatives all have different names, and they all show up in the output. One
can also reuse names across alternatives as long as the types exactly match. In that case, the unit will end up
with only a single instance of that member.

• An alternative can match against more than one value by separating them with commas (e.g., b"A", b"B"
-> x: int8;).

• Alternatives can have more than one field attached by enclosing them in braces, i.e.,: VALUE -> {
FIELD_1a; FIELD_1b; ...; FIELD_1n; }.

• Sometimes one really just needs the branching capability, but doesn’t have any field values to store. In that case
an anonymous void field may be helpful(e.g., b"A" -> : void { DoSomethingHere(); }.

2.5. Programming in Spicy 51

Spicy, Release 1.4.0

Branch by look-ahead

switch also works without any expression as long as the presence of all the alternatives can be reliably recognized
by looking ahead in the input stream:

module Test;

public type Foo = unit {
switch {

-> a: b"A";
-> b: b"B";
-> c: b"C";

};

on %done { print self; }
};

printf 'A' | spicy-driver foo.spicy
[$a=b"A", $b=(not set), $c=(not set)]

While this example is a bit contrived, the mechanism becomes powerful once you have subunits that are recognizable
by how they start:

module Test;

type A = unit {
a: b"A";

};

type B = unit {
b: uint16(0xffff);

};

public type Foo = unit {
switch {

-> a: A;
-> b: B;

};

on %done { print self; }
};

printf 'A ' | spicy-driver foo.spicy
[$a=[$a=b"A"], $b=(not set)]

printf '\377\377' | spicy-driver foo.spicy
[$a=(not set), $b=[$b=65535]]

52 Chapter 2. Documentation

Spicy, Release 1.4.0

Switching Over Fields With Common Size

You can limit the input any field in a unit switch receives by attaching an optional &size=EXPR attribute that specifies
the number of raw bytes to make available. This is analog to the field size attribute and especially useful to remove
duplication when each case is subject to the same constraint.

module Test;

public type Foo = unit {
tag: uint8;
switch (self.tag) {

1 -> b1: bytes &eod;
2 -> b2: bytes &eod &convert=$$.lower();

} &size=3;

on %done { print self; }
};

printf '\01ABC' | spicy-driver foo.spicy
[$tag=1, $b1=b"ABC", $b2=(not set)]

printf '\02ABC' | spicy-driver foo.spicy
[$tag=2, $b1=(not set), $b2=b"abc"]

Backtracking

Spicy supports a simple form of manual backtracking. If a field is marked with &try, a later call to the unit’s
backtrack() method anywhere down in the parse tree originating at that field will immediately transfer control
over to the field following the &try. When doing so, the data position inside the input stream will be reset to where it
was when the &try field started its processing. Units along the original path will be left in whatever state they were
at the time backtrack() executed (i.e., they will probably remain just partially initialized). When backtrack()
is called on a path that involves multiple &try fields, control continues after the most recent.

Example:

module Test;

public type test = unit {
foo: Foo &try;
bar: Bar;

on %done { print self; }
};

type Foo = unit {
a: int8 {

if ($$!= 1)
self.backtrack();

}
b: int8;

};

type Bar = unit {
a: int8;
b: int8;

};

2.5. Programming in Spicy 53

Spicy, Release 1.4.0

printf '\001\002\003\004' | spicy-driver backtrack.spicy
[$foo=[$a=1, $b=2], $bar=[$a=3, $b=4]]

printf '\003\004' | spicy-driver backtrack.spicy
[$foo=[$a=3, $b=(not set)], $bar=[$a=3, $b=4]]

backtrack() can be called from inside %error hooks, so this provides a simple form of error recovery as well.

Note: This mechanism is preliminary and will probably see refinement over time, both in terms of more automated
backtracking and by providing better control where to continue after backtracking.

Changing Input

By default, a Spicy parser proceeds linearly through its inputs, parsing as much as it can and yielding back to the host
application once it runs out of input. There are two ways to change this linear model: diverting parsing to a different
input, and random access within the current unit’s data.

Parsing custom data

A unit field can have either &parse-from=EXPR or &parse-at=EXPR attached to it to change where it’s receiv-
ing its data to parse from. EXPR is evaluated at the time the field is reached. For &parse-from it must produce a
value of type bytes, which will then constitute the input for the field. This can, e.g., be used to reparse previously
received input:

module Test;

public type Foo = unit {
x: bytes &size=2;
y: uint16 &parse-from=self.x;
z: bytes &size=2;

on %done { print self; }
};

printf '\x01\x02\x03\04' | spicy-driver foo.spicy
[$x=b"\x01\x02", $y=258, $z=b"\x03\x04"]

For &parse-at, EXPR must yield an iterator pointing to (a still valid) position of the current unit’s input stream
(such as retrieved through input()). The field will then be parsed from the data starting at that location.

Random access

While a unit is being parsed, you may revert the current input position backwards to any location between the first byte
the unit has seen and the current position. You can use a set of built-in unit methods to control the current position:

input() Returns a stream iterator pointing to the current input position.

set_input() Sets the current input position to the location of the specified stream iterator. Per above, the new
position needs to reside between the beginning of the current unit’s data and the current position; otherwise an
exception will be generated at runtime.

offset() Returns the numerical offset of the current input position relative to position of the first byte fed into this
unit.

54 Chapter 2. Documentation

Spicy, Release 1.4.0

position() Returns iterator to the current input position in the stream fed into this unit.

For random access, you’d typically get the current position through input(), subtract from it the desired number of
bytes you want to back, and then use set_input to establish that new position. By further storing iterators as unit
variables you can decouple these steps and, e.g., remember a position to later come back to.

Here’s an example that parses input data twice with different sub units:

module Test;

public type Foo = unit {
on %init() { self.start = self.input(); }

a: A { self.set_input(self.start); }
b: B;

on %done() { print self; }

var start: iterator<stream>;
};

type A = unit {
x: uint32;

};

type B = unit {
y: bytes &size=4;

};

printf '\00\00\00\01' | spicy-driver foo.spicy
[$a=[$x=1], $b=[$y=b"\x00\x00\x00\x01"], $start=<offset=0 data=b"\x00\x00\x00\x01">]

If you look at output, you see that start iterator remembers it’s offset, relative to the global input stream. It would
also show the data at that offset if the parser had not already discarded that at the time we print it out.

Note: Spicy parsers discard input data as quickly as possible as parsing moves through the input stream. Indeed,
that’s why using random access may come with a performance penalty as the parser now needs to buffer all of unit’s
data until it has been fully processed.

Filters

Spicy supports attaching filters to units that get to preprocess and transform a unit’s input before its parser gets to see
it. A typical use case for this is stripping off a data encoding, such as compression or Base64.

A filter is itself just a unit that comes with an additional property %filtermarking it as such. The filter unit’s input
represents the original input to be transformed. The filter calls an internally provided unit method forward() to pass
any transformed data on to the main unit that it’s attached to. The filter can call forward arbitrarily many times, each
time forwarding a subsequent chunk of input. To attach a filter to a unit, one calls the method connect_filter()
with an instance of the filter’s type. Putting that all together, this is an example of a simple a filter that upper-cases all
input before the main parsing unit gets to see it:

module Test;

type Filter = unit {
%filter;

(continues on next page)

2.5. Programming in Spicy 55

Spicy, Release 1.4.0

(continued from previous page)

: bytes &eod &chunked {
self.forward($$.upper());

}
};

public type Foo = unit {
on %init { self.connect_filter(new Filter); }
x: bytes &size=5 { print self.x; }

};

printf 'aBcDe' | spicy-driver foo.spicy
ABCDE

There are a couple of predefined filters coming with Spicy that become available by importing the filter library
module:

filter::Zlib Provides zlib decompression.

filter::Base64Decode Provides base64 decoding.

Sinks

Sinks provide a powerful mechanism to chain multiple units together into a layered stack, each processing the output
of its predecessor. A sink is the connector here that links two unit instances: one side writing and one side reading,
like a Unix pipe. As additional functionality, the sink can internally reassemble data chunks that are arriving out of
order before passing anything on.

Here’s a basic example of two units types chained through a sink:

module Test;

public type A = unit {
on %init { self.b.connect(new B); }

length: uint8;
data: bytes &size=self.length { self.b.write($$); }

on %done { print "A", self; }

sink b;
};

public type B = unit {
: /GET /;

path: /[^\n]+/;

on %done { print "B", self; }
};

printf '\13GET /a/b/c\n' | spicy-driver -p Test::A foo.spicy
B, [$path=b"/a/b/c"]
A, [$length=11, $data=b"GET /a/b/c\x0a", $b=<sink>]

Let’s see what’s going on here. First, there’s sink b inside the declaration of A. That’s the connector, kept as state
inside A. When parsing for A is about to begin, the %init hook connects the sink to a new instance of B; that’ll be the

56 Chapter 2. Documentation

Spicy, Release 1.4.0

receiver for data that A is going to write into the sink. That writing happens inside the field hook for data: once we
have parsed that field, we write what will go to the sink using its built-in write() method. With that write operation,
the data will emerge as input for the instance of B that we created earlier, and that will just proceed parsing it normally.
As the output shows, in the end both unit instances end up having their fields set.

As an alternative for using the write() in the example, there’s some syntactic sugar for fields of type bytes (like
data here): We can just replace the hook with a -> operator to have the parsed data automatically be forwarded to
the sink: data: bytes &size=self.length -> self.b.

Sinks have a number of further methods, see Sink for the complete reference. Most of them we will also encounter in
the following when discussing additional functionality that sinks provide.

Note: Because sinks are meant to decouple processing between two units, a unit connected to a sink will not pass any
parse errors back up to the sink’s parent. If you want to catch them, install an %error hook inside the connected unit.

Using Filters

Sinks also support filters to preprocess any data they receive before forwarding it on. This works just like for units
by calling the built-in sink method connect_filter(). For example, if in the example above, data would
have been gzip compressed, we could have instructed the sink to automatically decompress it by calling self.b.
connect_filter(new filter::Zlib) (leveraging the Spicy-provided Zlib filter).

Leveraging MIME Types

In our example above we knew which type of unit we wanted to connect. In practice, that may or may not be the case.
Often, it only becomes clear at runtime what the choice for the next layer should be, such as when using well-known
ports to determine the appropriate application-layer analyzer for a TCP stream. Spicy supports dynamic selection
through a generalized notion of MIME types: Units can declare which MIME types they know how to parse (see
Meta data) , and sinks have connect_mime_type() method that will instantiate and connect any that match their
argument (if that’s multiple, all will be connected and all will receive the same data).

“MIME type” can mean actual MIME types, such text/html. Applications can, however, also define their own
notion of <type>/<subtype> to model other semantics. For example, one could use x-port/443 as conven-
tion to trigger parsers by well-known port. An SSL unit would then declare %mime-type = "x-port/443,
and the connection would be established through the equivalent of connect_mime_type("x-port/%d" %
resp_port_of_connection).

Todo: For this specific example, there’s a better solution: We also have the %port property and should just build up
a table index on that.

Reassembly

Reassembly (or defragmentation) of out-of-order data chunks is a common requirement for many protocols. Sinks
have that functionality built-in by allowing you to associate a position inside a virtual sequence space with each chunk
of data. Sinks will then pass their data on to connected units only once they have collected a continuous, in-order
range of bytes.

The easiest way to leverage this is to simply associate sequence numbers with each write() operation:

2.5. Programming in Spicy 57

Spicy, Release 1.4.0

module Test;

public type Foo = unit {

sink data;

on %init {
self.data.connect(new Bar);
self.data.write(b"567", 5);
self.data.write(b"89", 8);
self.data.write(b"012", 0);
self.data.write(b"34", 3);

}
};

public type Bar = unit {
s: bytes &eod;
on %done { print self.s; }

};

spicy-driver -p Test::Foo foo.spicy </dev/null
0123456789

By default, Spicy expects the sequence space to start at zero, so the first byte of the input stream needs
to be passed in with sequence number zero. You can change that base number by calling the sink method
set_initial_sequence_number(). You can control Spicy’s gap handling, including when to stop buffering
data because you know nothing further will arrive anymore. Spicy can also notify you about unsuccessful reassembly
through a series of built-in unit hooks. See Sink for a reference of the available functionality.

Contexts

Parsing may need to retain state beyond any specific unit’s lifetime. For example, a UDP protocol may want to
remember information across individual packets (and hence units), or a bi-directional protocol may need to correlate
the request side with the response side. One option for implementing this in Spicy is managing such state manually
in global variables, for example by maintaining a global map that ties a unique connection ID to the information that
needs to be retained. However, doing so is clearly cumbersome and error prone. As an alternative, a unit can make
use of a dedicated context value, which is an instance of a custom type that has its lifetime determined by the host
application running the parser. For example, Zeek will tie the context to the underlying connection.

A public unit can declare its context through a unit-level property called %context, which takes an arbitrary type as
its argument. For example:

public type Foo = unit {
%context = bytes;
[...]

};

By default, each instance of such a unit will then receive a unique context value of that type. The context value can be
accessed through the context() method, which will return a reference to it:

module Test;

public type Foo = unit {
%context = int64;

(continues on next page)

58 Chapter 2. Documentation

Spicy, Release 1.4.0

(continued from previous page)

on %init { print self.context(); }
};

spicy-driver foo.spicy </dev/null
0

By itself, this is not very useful. However, host applications can control how contexts are maintained, and they may
assign the same context value to multiple units. For example, when parsing a protocol, the Zeek plugin always creates
a single context value shared by all top-level units belonging to the same connection, enabling parsers to maintain
bi-directional, per-connection state. The batch mode of spicy-driver does the same.

As an example, the following grammar—mimicking a request/reply-style protocol—maintains a queue of outstanding
textual commands to then associate numerical result codes with them as the responses come in:

module Test;

We wrap the state into a tuple to make it easy to add more attributes if needed
→˓later.
type Pending = tuple<pending: vector<bytes>>;

public type Requests = unit {
%context = Pending;

: Request[] foreach { self.context().pending.push_back($$.cmd); }
};

public type Replies = unit {
%context = Pending;

: Reply[] foreach {
if (|self.context().pending|) {

print "%s -> %s" % (self.context().pending.back(), $$.response);
self.context().pending.pop_back();

}
else

print "<missing request> -> %s", $$.response;
}

};

type Request = unit {
cmd: /[A-Za-z]+/;
: b"\n";

};

type Reply = unit {
response: /[0-9]+/;
: b"\n";

};

spicy-driver -F input.dat context.spicy
msg -> 100
put -> 200
CAT -> 555
end -> 300
get -> 400
LST -> 666

2.5. Programming in Spicy 59

Spicy, Release 1.4.0

The output is produced from this input batch file. This would work the same when used with the Zeek
plugin on a corresponding packet trace.

Note that the units for the two sides of the connection need to declare the same %context type. Processing will abort
at runtime with a type mismatch error if that’s not the case.

Error Recovery

Real world input does not always look like what parsers expect: endpoints may not conform to the protocol’s spec-
ification, a parser’s grammar might not fully cover all of the protocol, or some input may be missing due to packet
loss or stepping into the middle of a conversation. By default, if a Spicy parser encounters such situations, it will
abort parsing altogether and issue an error message. Alternatively, however, Spicy allows grammar writers to specify
heuristics to recover from errors. The main challenge here is finding a spot in the subsequent input where parsing can
reliably resume.

Spicy employs a two-phase approach to such recovery: it first searches for a possible point in the input stream where
it seems promising to attempt to resume parsing; and then it confirms that choice by trying to parse a few fields at that
location according to the grammar grammar to see if that’s successful. We say that during the first part of this process,
the Spicy parser is in synchronization mode; d during the second, it is in trial mode.

Phase 1: Synchronization

To identity locations where parsing can attempt to pick up again after an error, a grammar can add &synchronize
attributes to selected unit fields, marking them as a synchronization points. Whenever an error occurs during parsing,
Spicy will determine the closest synchronization point in the grammar following the error’s location, and then attempt
to continue processing there by skipping ahead in the input data until it aligns with what that field is looking for.

A synchronization point may be any of the following:

• A field for which parsing begins with a constant literal (e.g., a specific sequence of bytes). To realign the input
stream, the parser will search the input for the next occurrence of this literal, discarding any data in between.
Example:

type X = unit { ... }

type Y = unit {
a: b"begin-of-Y";
b: bytes &size=10;

};

type Foo = unit {
x: X;
y: Y &synchronize;

};

If parse error occurs during Foo::x, Spicy will move ahead to Foo::y, switch into synchronization mode,
and start search the input for the bytes begin-of-Y. If found, it’ll continue with parsing Foo::y at that
location in trial mode (see below).

Note: Behind the scenes, synchronization through literals uses the same machinery as look-ahead parsing,
meaning that it works across sub-units, vector content, switch statements, etc.. No matter how complex the
field, as long as there’s one or more literals that always must be coming first when parsing it, the field may be
used as a synchronization point.

60 Chapter 2. Documentation

Spicy, Release 1.4.0

• A field that’s located inside the input stream at a fixed offset relative to the field triggering the error. The parser
will then be able to skip ahead to that offset. Example:

type X = unit { ... }
type Y = unit { ... }

type Foo = unit {}
x: X &size=512;
y: Y &synchronize;

};

Here, when parsing Foo:x triggers an error, Spicy will know that it can continue with Foo::y at offset
<beginning of Foox:x> + 512.

Todo: This synchronization strategy is not yet implemented.

• When parsing a vector, the inner elements may provide synchronization points as well. Example:

type X = unit {
a: b"begin-of-X";
b: bytes &size=10;

};

type Foo = unit {}
xs: (X &synchronize)[];

};

If one element of the vector Foo::xs fails to parse, Spicy will attempt to find the beginning of the next
X in the input stream and continue there. For this to work, the vector’s elements must itself represent valid
synchronization point (e.g., start with a literal). If the list is of fixed size, after successful synchronization, it
will contain the expected number of entries, but some of them may remain (fully or partially) uninitialized if
they encountered errors.

Phase 2: Trial parsing

Once input has been realigned with a synchronization point, parsing switches from synchronization mode into trial
mode, in which the parser will attempt to confirm that it has indeed found a viable place to continue. It does so by
proceeding to parse subsequent input from the synchronization point onwards, until one of the following occurs:

• A unit hook explicitly acknowledges that synchronization has been successful by executing Spicy’s confirm
statement. Typically, a grammar will do so once it has been able to correctly parse a few fields following the
synchronization point–whatever it needs to sufficiently certain that it’s indeed seeing the expected structure.

• A unit hook explicitly declines the synchronization by executing Spicy’s reject statement. This will abandon the
current synchronization attempt, and switch back into the original synchronization mode again to find another
location to try.

• Parsing reaches the end of the grammar without either confirm or reject already called. In this case, the
parser will abort with a fatal parse error.

Note that during trial mode, any fields between the synchronization point and the eventual confirm/reject location
will already be processed as usual, including any hooks executing. This may leave the unit’s state in a partially
initialized state if trial parsing eventually fails. Trial mode will also consume any input along the way, with any further
synchronization attempts proceeding only on subsequent, not yet seen, data.

2.5. Programming in Spicy 61

Spicy, Release 1.4.0

Synchronisation Hooks

For customization, Spicy provides a set of hooks executing at different points during the synchronization process:

on %synced { ...} Executes when a synchronization point has been found and parsing resumes there, just
before the parser begins processing the corresponding field in trial mode.

on %confirmed { ...} Executes when trial mode ends successfully with confirm.

on %rejected { ...} Executes when trial mode fails with reject.

Example Synchronization Process

As an example, let’s consider a grammar consisting of two sections where each section is started with a section header
literal (SEC_A and SEC_B here).

We want to allow for inputs which miss parts or all of the first section. For such inputs, we can still synchronize the
input stream by looking for the start of the second section. (For simplicity, we just use a single unit, even though
typically one would probably have separate units for the two sections.)

module Test;

public type Example = unit {
start_a: /SEC_A/;
a: uint8;

If we fail to find e.g., 'SEC_A' in the input, try to synchronize on this
→˓literal.

start_b: /SEC_B/ &synchronize;
b: bytes &eod;

In this example confirm unconditionally.
on %synced {

print "Synced: %s" % self;
confirm;

}

Perform logging for these %confirmed and %rejected.
on %confirmed { print "Confirmed: %s" % self; }
on %rejected { print "Rejected: %s" % self; }

on %done { print "Done %s" % self; }
};

Let us consider that this parsers encounters the input \xFFSEC_Babc that missed the SEC_A section marker:

• start_a missing,

• a=255

• start_b=SEC_B as expected, and

• b=abc.

For such an input parsing will encounter an initial error when it sees \xFF where SEC_A would have been expected.

1. Since start_b is marked as a synchronization point, the parser enters synchronisation mode, and jumps over
the field a to start_b, to now search for SEC_B.

2. At this point the input still contains the unexpected \xFF and remains \xFFSEC_Babc . While searching for
SEC_B \xFF is skipped over, and then the expected token is found. The input is now SEC_Babc.

62 Chapter 2. Documentation

Spicy, Release 1.4.0

3. The parser has successfully synchronized and enters trial mode. All %synced hooks are invoked.

4. The unit’s %synced hook executes confirm and the parser leaves trial mode. All %confirmed hooks are
invoked.

5. Regular parsing continues at start_b. The input was SEC_Babc so start_b is set to SEC_B and b to
abc.

Since parsing for start_a was unsuccessful and a was jumped over, their fields remain unset.

printf '\xFFSEC_Babc' | spicy-driver foo.spicy
Synced: [$start_a=(not set), $a=(not set), $start_b=(not set), $b=(not set)]
Confirmed: [$start_a=(not set), $a=(not set), $start_b=(not set), $b=(not set)]
Done [$start_a=(not set), $a=(not set), $start_b=b"SEC_B", $b=b"abc"]

2.5.2 Language

Spicy provides a domain-specific language that consists of two main types of constructs: parsing elements that capture
the layout of an input format; along with more standard constructs of typical imperative scripting languages, such as
modules, types, declarations, expressions, etc.. While the previous section focuses on the former, we summarize the
more “traditional” parts of Spicy’s language in the following.

We assume some familiarity with other scripting languages. Generally, where not otherwise stated, think of Spicy as
a “C-style scripting language” in terms of syntax & semantics, with corresponding rules for, e.g., block structure ({
... }), operator precedence, identifier naming, etc.. If you are familiar with Zeek’s scripting language in particular,
you should be able to get up to speed with Spicy pretty quickly.

Identifiers

Spicy distinguishes between different kinds of identifiers:

Declarations Identifiers used in declarations of variables, types, functions, etc., must start with a letter or under-
score, and otherwise contain only alphanumerical characters and underscores. They must not start with two
underscores, and cannot match any of Spicy’s built-in keywords.

Attributes Identifiers augmenting other language elements with additional attributes always begin with &. They
otherwise follow the same rules as identifiers for declarations, except that they also permit dashes. Note that
you cannot define your own attributes; usage is limited to a set of predefined options.

Properties Identifiers defining properties of modules and types (as in, e.g., Meta data) always begin with %. They
otherwise follow the same rules as identifiers for declarations, except that they also permit dashes. Note that
you cannot define your own properties; usage is limited to a set of predefined options.

Identifiers are always case-sensitive in Spicy.

Modules

Spicy source code is structured around modules, which introduce namespaces around other elements defined inside
(e.g., types, functions). Accordingly, all Spicy input files must start with module NAME;, where NAME is scope
that’s being created.

After that initial module statement, modules may contain arbitrary list of declarations (types, globals, functions), as
well as code statements to execute. Any code defined at the global level will run once at the module’s initialization
time. That’s what enables Spicy’s minimal hello-world module to look like the following:

2.5. Programming in Spicy 63

Spicy, Release 1.4.0

module Test;

print "Hello, world!";

spicyc -j hello-world.spicy
Hello, world!

Importing

To make the contents of another module accessible, Spicy provides an import NAME; statement that pulls in all
public identifiers of the specified external module. Spicy then searches for name.spicy (i.e., the lower-case version
of the imported module NAME plus a .spicy extension) along it’s module search path. By default, that’s the current
directory plus the location where Spicy’s pre-built library modules are installed.

spicy-config --libdirs shows the default search path. The Spicy tools spicy && spicy-driver pro-
vide --library-path options to add further custom directories. They also allow to fully replace the built-in default
search with a custom value by setting the environment variable SPICY_PATH.

There’s a second version of the import statement that allows to import from relative locations inside the search path:
import NAME from X.Y.Z; searches the module NAME (i.e., NAME.spicy) inside a sub-directory X/Y/Z
along the search path.

Once Spicy code has imported a module, it can access identifiers by prefixing them with the module’s namespace:

import MyModule;

print MyModule::my_global_variable;

Generally, only identifiers declared as public become accessible across module boundaries. The one exception are
types, which are implicitly public.

Note: Spicy makes types implicitly public so that external unit hooks always have access to them. We may consider
a more fine-grained model here in the future.

Spicy comes with a set of library modules that you may import in your code to gain access to their functionality.

Global Properties

A module may define the following global properties:

%byte-order = ORDER; Defaults the byte order for any parsing inside this module to <expr>,
where ORDER must be of type is type spicy::ByteOrder.

%spicy-version = "VERSION"; Specifies that the module requires a given minimum version of
Spicy, where VERSION must be a string of the form X.Y or X.Y.Z.

%skip = REGEXP; Specifies a pattern which should be skipped when encountered in the input stream
in between parsing of unit fields (including before/after the first/last field).

%skip-pre = REGEXP; Specifies a pattern which should be skipped when encountered in the input
stream before parsing of a unit begins.

%skip-post = REGEXP; Specifies a pattern which should be skipped when encountered in the input
stream after parsing of a unit has finished.

64 Chapter 2. Documentation

Spicy, Release 1.4.0

Functions

Spicy’s language allows to define custom functions just like most other languages. The generic syntax for defining a
function with is N parameters is:

[public] function NAME(NAME_1: TYPE_1, ..., NAME_N: TYPE_N) [: RETURN_TYPE] {
... BODY ...

}

A public function will be accessible from other modules . If the return type is skipped, it’s implicitly taken as void,
i.e., the function will not return anything. If a function has return type other than void, all paths through the body must
end in a return returning a corresponding value.

A parameter specification can be postfixed with a default value: NAME: TYPE = DEFAULT. Callers may then omit
that parameter.

By default, by parameters are passed by constant reference and hence remain read-only inside the function’s body.
To make a parameter modifiable, with any changes becoming visible to the caller, a parameter can be prefixed with
inout:

module Test;

global s = "1";

function foo(inout x: string) {
x = "2";

}

print s;
foo(s);
print s;

1
2

Spicy has couple more function-like constructs (Unit Hooks and Unit Parameters) that use the same conventions for
parameter passing.

Variables and Constants

At the global module level, we declare variables with the global keyword:

[public] global NAME: TYPE [= DEFAULT];

This defines a global variable called NAME with type TYPE. If the variable is declared with public visibility other
modules can reference it. If a default is given, Spicy initializes the global accordingly before any code executes.
Otherwise, the global receives a type-specific default, typically the type’s notion of a null value. As a result, globals
are always initialized to a well-defined value.

As a shortcut, you can skip : TYPE if the global comes with a default. Spicy then just applies the expression’s type
to the global.

We define global constants in a similar way, just replacing global with const:

const x: uint32 = 42;
const foo = "Foo";

2.5. Programming in Spicy 65

Spicy, Release 1.4.0

Inside a function, local variables use the same syntax once more, just prefixed with local this time:

function f() {
local x: bytes;
local y = "Y";

}

Usual scoping rules apply to locals. Just like globals, locals are always initialized to a well-defined value: either their
default if given, or the type’s null value.

Types

Address

The address type stores both IPv4 and IPv6 addresses.

Type

• addr

Constants

• IPv4: 1.2.3.4

• IPv6: [2001:db8:85a3:8d3:1319:8a2e:370:7348], [::1.2.3.4]

Methods

family()→ hilti::AddressFamily
Returns the protocol family of the address, which can be IPv4 or IPv6.

Operators

addr == addr→ bool
Compares two address values.

addr != addr→ bool
Compares two address values.

Bitfield

Bitfields provide access to individual bitranges inside an unsigned integer. That can’t be instantiated directly, but must
be defined and parsed inside a unit.

66 Chapter 2. Documentation

Spicy, Release 1.4.0

Type

• bitfield(N) { RANGE_1; ...; RANGE_N }

• Each RANGE has one of the forms LABEL: A or LABEL: A..B where A and B are bit numbers.

Operators

bitfield . <attribute>→ <field type>
Retrieves the value of a bitfield’s attribute. This is the value of the corresponding bits inside the underlying
integer value, shifted to the very right.

Bool

Boolean values can be True or False.

Type

• bool

Constants

• True, False

Operators

bool == bool→ bool
Compares two boolean values.

bool != bool→ bool
Compares two boolean values.

Bytes

Bytes instances store raw, opaque data. They provide iterators to traverse their content.

Types

• bytes

• iterator<bytes>

2.5. Programming in Spicy 67

Spicy, Release 1.4.0

Constants

• b"Spicy", b""

Methods

at(i: uint<64>)→ iterator<bytes>
Returns an iterator representing the offset i inside the bytes value.

decode(charset: enum = hilti::Charset::UTF8)→ string
Interprets the bytes as representing an binary string encoded with the given character set, and converts it into
a UTF8 string.

find(needle: bytes)→ tuple<bool, iterator<bytes>>
Searches needle in the value’s content. Returns a tuple of a boolean and an iterator. If needle was found, the
boolean will be true and the iterator will point to its first occurrence. If needle was not found, the boolean will
be false and the iterator will point to the last position so that everything before it is guaranteed to not contain
even a partial match of needle. Note that for a simple yes/no result, you should use the in operator instead of
this method, as it’s more efficient.

join(inout parts: vector)→ bytes
Returns the concatenation of all elements in the parts list rendered as printable strings. The portions will be
separated by the bytes value to which this method is invoked as a member.

lower(charset: enum = hilti::Charset::UTF8)→ bytes
Returns a lower-case version of the bytes value, assuming it is encoded in character set charset.

match(regex: regexp, [group: uint<64>])→ result<bytes>
Matches the bytes object against the regular expression regex. Returns the matching part or, if group is given,
then the corresponding subgroup. The expression is considered anchored to the beginning of the data.

split([sep: bytes])→ vector<bytes>
Splits the bytes value at each occurrence of sep and returns a vector containing the individual pieces, with all
separators removed. If the separator is not found, the returned vector will have the whole bytes value as its
single element. If the separator is not given, or empty, the split will take place at sequences of white spaces.

split1([sep: bytes])→ tuple<bytes, bytes>
Splits the bytes value at the first occurrence of sep and returns the two parts as a 2-tuple, with the separator
removed. If the separator is not found, the returned tuple will have the whole bytes value as its first element and
an empty value as its second element. If the separator is not given, or empty, the split will take place at the first
sequence of white spaces.

starts_with(b: bytes)→ bool
Returns true if the bytes value starts with b.

strip([side: spicy::Side], [set: bytes])→ bytes
Removes leading and/or trailing sequences of all characters in set from the bytes value. If set is not given,
removes all white spaces. If side is given, it indicates which side of the value should be stripped; Side::Both
is the default if not given.

sub(begin: uint<64>, end: uint<64>)→ bytes
Returns the subsequence from offset begin to (but not including) offset end.

sub(inout begin: iterator<bytes>, inout end: iterator<bytes>)→ bytes
Returns the subsequence from begin to (but not including) end.

sub(inout end: iterator<bytes>)→ bytes
Returns the subsequence from the value’s beginning to (but not including) end.

68 Chapter 2. Documentation

Spicy, Release 1.4.0

to_int([base: uint<64>])→ int<64>
Interprets the data as representing an ASCII-encoded number and converts that into a signed integer, using a
base of base. base must be between 2 and 36. If base is not given, the default is 10.

to_int(byte_order: enum)→ int<64>
Interprets the bytes as representing an binary number encoded with the given byte order, and converts it into
signed integer.

to_time([base: uint<64>])→ time
Interprets the bytes as representing a number of seconds since the epoch in the form of an ASCII-encoded
number, and converts it into a time value using a base of base. If base is not given, the default is 10.

to_time(byte_order: enum)→ time
Interprets the bytes as representing as number of seconds since the epoch in the form of an binary number
encoded with the given byte order, and converts it into a time value.

to_uint([base: uint<64>])→ uint<64>
Interprets the data as representing an ASCII-encoded number and converts that into an unsigned integer, using
a base of base. base must be between 2 and 36. If base is not given, the default is 10.

to_uint(byte_order: enum)→ uint<64>
Interprets the bytes as representing an binary number encoded with the given byte order, and converts it into
an unsigned integer.

upper(charset: enum = hilti::Charset::UTF8)→ bytes
Returns an upper-case version of the bytes value, assuming it is encoded in character set charset.

Operators

begin(<container>)→ <iterator>
Returns an iterator to the beginning of the container’s content.

end(<container>)→ <iterator>
Returns an iterator to the end of the container’s content.

bytes == bytes→ bool
Compares two bytes values lexicographically.

bytes > bytes→ bool
Compares two bytes values lexicographically.

bytes >= bytes→ bool
Compares two bytes values lexicographically.

bytes in bytes→ bool
Returns true if the right-hand-side value contains the left-hand-side value as a subsequence.

bytes !in bytes→ bool
Performs the inverse of the corresponding in operation.

bytes < bytes→ bool
Compares two bytes values lexicographically.

bytes <= bytes→ bool
Compares two bytes values lexicographically.

|bytes|→ uint<64>
Returns the number of bytes the value contains.

bytes + bytes→ bytes
Returns the concatenation of two bytes values.

2.5. Programming in Spicy 69

Spicy, Release 1.4.0

bytes += bytes→ bytes
Appends one bytes value to another.

bytes += uint<8>→ bytes
Appends a single byte to the data.

bytes += view<stream>→ bytes
Appends a view of stream data to a bytes instance.

bytes != bytes→ bool
Compares two bytes values lexicographically.

Iterator Operators

*iterator<bytes>→ uint<8>
Returns the character the iterator is pointing to.

iterator<bytes> - iterator<bytes>→ int<64>
Returns the number of bytes between the two iterators. The result will be negative if the second iterator points
to a location before the first. The result is undefined if the iterators do not refer to the same bytes instance.

iterator<bytes> == iterator<bytes>→ bool
Compares the two positions. The result is undefined if they are not referring to the same bytes value.

iterator<bytes> > iterator<bytes>→ bool
Compares the two positions. The result is undefined if they are not referring to the same bytes value.

iterator<bytes> >= iterator<bytes>→ bool
Compares the two positions. The result is undefined if they are not referring to the same bytes value.

iterator<bytes>++→ iterator<bytes>
Advances the iterator by one byte, returning the previous position.

++iterator<bytes>→ iterator<bytes>
Advances the iterator by one byte, returning the new position.

iterator<bytes> < iterator<bytes>→ bool
Compares the two positions. The result is undefined if they are not referring to the same bytes value.

iterator<bytes> <= iterator<bytes>→ bool
Compares the two positions. The result is undefined if they are not referring to the same bytes value.

iterator<bytes> + uint<64>→ iterator<bytes> (commutative)

Returns an iterator which is pointing the given number of bytes beyond the one passed in.

iterator<bytes> += uint<64>→ iterator<bytes>
Advances the iterator by the given number of bytes.

iterator<bytes> != iterator<bytes>→ bool
Compares the two positions. The result is undefined if they are not referring to the same bytes value.

70 Chapter 2. Documentation

Spicy, Release 1.4.0

Enum

Enum types associate labels with numerical values.

Type

• enum { LABEL_1; ... LABEL_N }

• Each label has the form ID [= VALUE]. If VALUE is skipped, one will be assigned automatically.

• Each enum type comes with an implicitly defined Undef label with a value distinct from all other ones. When
coerced into a boolean, an enum will be true iff it’s not Undef.

Note: An instance of an enum can assume a numerical value that does not map to any of its defined labels. If printed,
it will then render into <unknown-N> in that case, with N being the decimal expression of its numeric value.

Constants

• The individual labels represent constants of the corresponding type (e.g., MyEnum::MyFirstLabel is a
constant of type MyEnum).

Methods

has_label()→ bool
Returns true if the value of op1 corresponds to a known enum label (other than Undef), as defined by it’s type.

Operators

enum-type(int)→ enum
Instantiates an enum instance initialized from a signed integer value. The value does not need to correspond to
any of the type’s enumerator labels.

enum-type(uint)→ enum
Instantiates an enum instance initialized from an unsigned integer value. The value does not need to correspond
to any of the type’s enumerator labels. It must not be larger than the maximum that a signed 64-bit integer value
can represent.

cast<int-type>(enum)→ int
Casts an enum value into a signed integer. If the enum value is Undef, this will return -1.

cast<uint-type>(enum)→ uint
Casts an enum value into a unsigned integer. This will throw an exception if the enum value is Undef.

enum == enum→ bool
Compares two enum values.

enum != enum→ bool
Compares two enum values.

2.5. Programming in Spicy 71

Spicy, Release 1.4.0

Exception

Todo: This isn’t available in Spicy yet (#89).

Integer

Spicy distinguishes between signed and unsigned integers, and always requires specifying the bitwidth of a type.

Type

• intN for signed integers, where N can be one of 8, 16, 32, 64.

• uintN for signed integers, where N can be one of 8, 16, 32, 64.

Constants

• Unsigned integer: 1234, +1234, uint8(42), uint16(42), uint32(42), uint64(42)

• Signed integer: -1234, int8(42), int8(-42), int16(42), int32(42), int64(42)

Operators

uint & uint→ uint
Computes the bit-wise ‘and’ of the two integers.

uint | uint→ uint
Computes the bit-wise ‘or’ of the two integers.

uint ^ uint→ uint
Computes the bit-wise ‘xor’ of the two integers.

cast<enum-type>(int)→ enum
Converts the value into an enum instance. The value does not need to correspond to any of the target type’s
enumerator labels.

cast<enum-type>(uint)→ enum
Converts the value into an enum instance. The value does not need to correspond to any of the target type’s
enumerator labels. It must not be larger than the maximum that a signed 64-bit integer value can represent.

cast<int-type>(int)→ int
Converts the value into another signed integer type, accepting any loss of information.

cast<int-type>(uint)→ int
Converts the value into a signed integer type, accepting any loss of information.

cast<interval-type>(int)→ interval
Interprets the value as number of seconds.

cast<interval-type>(uint)→ interval
Interprets the value as number of seconds.

cast<real-type>(int)→ real
Converts the value into a real, accepting any loss of information.

72 Chapter 2. Documentation

https://github.com/zeek/spicy/issues/89

Spicy, Release 1.4.0

cast<real-type>(uint)→ real
Converts the value into a real, accepting any loss of information.

cast<time-type>(uint)→ time
Interprets the value as number of seconds since the UNIX epoch.

cast<uint-type>(int)→ uint
Converts the value into an unsigned integer type, accepting any loss of information.

cast<uint-type>(uint)→ uint
Converts the value into another unsigned integer type, accepting any loss of information.

int--→ int
Decrements the value, returning the old value.

uint--→ uint
Decrements the value, returning the old value.

++int→ int
Increments the value, returning the new value.

++uint→ uint
Increments the value, returning the new value.

int - int→ int
Computes the difference between the two integers.

uint - uint→ uint
Computes the difference between the two integers.

int -= int→ int
Decrements the first value by the second, assigning the new value.

uint -= uint→ uint
Decrements the first value by the second.

int / int→ int
Divides the first integer by the second.

uint / uint→ uint
Divides the first integer by the second.

int /= int→ int
Divides the first value by the second, assigning the new value.

uint /= uint→ uint
Divides the first value by the second, assigning the new value.

int == int→ bool
Compares the two integers.

uint == uint→ bool
Compares the two integers.

int > int→ bool
Compares the two integers.

uint > uint→ bool
Compares the two integers.

int >= int→ bool
Compares the two integers.

2.5. Programming in Spicy 73

Spicy, Release 1.4.0

uint >= uint→ bool
Compares the two integers.

int++→ int
Increments the value, returning the old value.

uint++→ uint
Increments the value, returning the old value.

++int→ int
Increments the value, returning the new value.

++uint→ uint
Increments the value, returning the new value.

int < int→ bool
Compares the two integers.

uint < uint→ bool
Compares the two integers.

int <= int→ bool
Compares the two integers.

uint <= uint→ bool
Compares the two integers.

int % int→ int
Computes the modulus of the first integer divided by the second.

uint % uint→ uint
Computes the modulus of the first integer divided by the second.

int * int→ int
Multiplies the first integer by the second.

uint * uint→ uint
Multiplies the first integer by the second.

int *= int→ int
Multiplies the first value by the second, assigning the new value.

uint *= uint→ uint
Multiplies the first value by the second, assigning the new value.

~uint→ uint
Computes the bit-wise negation of the integer.

int ** int→ int
Computes the first integer raised to the power of the second.

uint ** uint→ uint
Computes the first integer raised to the power of the second.

uint << uint→ uint
Shifts the integer to the left by the given number of bits.

uint >> uint→ uint
Shifts the integer to the right by the given number of bits.

-int→ int
Inverts the sign of the integer.

74 Chapter 2. Documentation

Spicy, Release 1.4.0

int + int→ int
Computes the sum of the integers.

uint + uint→ uint
Computes the sum of the integers.

int += int→ int
Increments the first integer by the second.

uint += uint→ uint
Increments the first integer by the second.

int != int→ bool
Compares the two integers.

uint != uint→ bool
Compares the two integers.

Interval

Am interval value represents a period of time. Intervals are stored with nanosecond resolution, which is retained across
all calculations.

Type

• interval

Constants

• interval(SECS) creates an interval from a signed integer or real value SECS specifying the period in
seconds.

• interval_ns(NSECS) creates an interval from a signed integer value NSECS specifying the period in
nanoseconds.

Methods

nanoseconds()→ uint<64>
Returns the time as an integer value representing nanoseconds since the UNIX epoch.

seconds()→ real
Returns the time as a real value representing seconds since the UNIX epoch.

Operators

time - time→ interval
Returns the difference of the times.

time - interval→ time
Subtracts the interval from the time.

time == time→ bool
Compares two time values.

2.5. Programming in Spicy 75

Spicy, Release 1.4.0

time > time→ bool
Compares the times.

time >= time→ bool
Compares the times.

time < time→ bool
Compares the times.

time <= time→ bool
Compares the times.

time + interval→ time (commutative)

Adds the interval to the time.

time != time→ bool
Compares two time values.

List

Spicy uses lists only in a limited form as temporary values, usually for initializing other containers. That means you
can only create list constants, but you cannot declare variables or unit fields to have a list type (use vector instead).

Constants

• [E_1, E_2, ..., E_N] creates a list of N elements. The values E_I must all have the same type. []
creates an empty list of unknown element type.

• [EXPR for ID in ITERABLE] creates a list by evaluating EXPR for all elements in ITERABLE, assem-
bling the individual results into the final list value. The extended form [EXPR for ID in SEQUENCE if
COND] includes only elements into the result for which COND evaluates to True. Both EXPR and COND can
use ID to refer to the current element.

• list(E_1, E_2, ..., E_N) is the same as [E_1, E_2, ..., E_N], and list() is the same as
[].

• list<T>(E_1, E_2, ..., E_N) creates a list of type T, initializing it with the N elements E_I.
list<T>() creates an empty list.

Operators

begin(<container>)→ <iterator>
Returns an iterator to the beginning of the container’s content.

end(<container>)→ <iterator>
Returns an iterator to the end of the container’s content.

list == list→ bool
Compares two lists element-wise.

|list|→ uint<64>
Returns the number of elements a list contains.

list != list→ bool
Compares two lists element-wise.

76 Chapter 2. Documentation

Spicy, Release 1.4.0

Map

Maps are containers holding key/value pairs of elements, with fast lookup for keys to retrieve the corresponding value.
They provide iterators to traverse their content, with no particular ordering.

Types

• map<K, V> specifies a map with key type K and value type V.

• iterator<map<K, V>>

Constants

• map(K_1: V_1, K_2: V_2, ..., K_N: V_N) creates a map of N elements, initializing it with the
given key/value pairs. The keys K_I must all have the same type, and the values V_I must likewise all have the
same type. map() creates an empty map of unknown key/value types; this cannot be used directly but must be
coerced into a fully-defined map type first.

• map<K, V>(K_1: V_1, K_2: V_2, ..., K_N: V_N) creates a map of type map<K, V>, ini-
tializing it with the given key/value pairs. map<K, V>() creates an empty map.

Methods

clear()→ void
Removes all elements from the map.

get(key: <any>, [default: <any>])→ <type of element>
Returns the map’s element for the given key. If the key does not exist, returns the default value if provided;
otherwise throws a runtime error.

Operators

begin(<container>)→ <iterator>
Returns an iterator to the beginning of the container’s content.

delete map[key]→ void
Removes an element from the map.

end(<container>)→ <iterator>
Returns an iterator to the end of the container’s content.

map == map→ bool
Compares two maps element-wise.

<any> in map→ bool
Returns true if an element is part of the map.

<any> !in map→ bool
Performs the inverse of the corresponding in operation.

map[key]→ <type of element>
Returns the map’s element for the given key. The key must exist, otherwise the operation will throw a runtime
error.

map[key]=<any>→ void
Updates the map value for a given key. If the key does not exist a new element is inserted.

2.5. Programming in Spicy 77

Spicy, Release 1.4.0

|map|→ uint<64>
Returns the number of elements a map contains.

map != map→ bool
Compares two maps element-wise.

Iterator Operators

*iterator<map>→ <dereferenced type>
Returns the map element that the iterator refers to.

iterator<map> == iterator<map>→ bool
Returns true if two map iterators refer to the same location.

iterator<map>++→ iterator<map>
Advances the iterator by one map element, returning the previous position.

++iterator<map>→ iterator<map>
Advances the iterator by one map element, returning the new position.

iterator<map> != iterator<map>→ bool
Returns true if two map iterators refer to different locations.

Optional

An optional value may hold a value of another type, or can alternatively remain unset. A common use case for optional
is the return value of a function that may fail.

• optional<TYPE>

Constants

• optional(EXPR) creates an optional<T>, where T is the type of the expression EXPR and initializes it
with the value of EXPR.

More commonly, however, optional values are initialized through assignment:

• Assigning an instance of TYPE to an optional<TYPE> sets it to the instance’s value.

• Assigning Null to an optional<TYPE> unsets it.

Operators

*optional→ <dereferenced type>
Returns the element stored, or throws an exception if none.

78 Chapter 2. Documentation

Spicy, Release 1.4.0

Port

Ports represent the combination of a numerical port number and an associated transport-layer protocol.

Type

• port

Constants

• 443/tcp, 53/udp

• port(PORT, PROTOCOL) creates a port where PORT is a port number and PROTOCOL a spicy::Protocol.

Methods

protocol()→ hilti::Protocol
Returns the protocol the port is using (such as UDP or TCP).

Operators

port == port→ bool
Compares two port values.

port != port→ bool
Compares two port values.

Real

“Real” values store floating points with double precision.

Type

• real

Constants

• 3.14, 10e9, 0x1.921fb78121fb8p+1

Operators

cast<int-type>(real)→ int
Converts the value to a signed integer type, accepting any loss of information.

cast<interval-type>(real)→ interval
Interprets the value as number of seconds.

cast<time-type>(real)→ time
Interprets the value as number of seconds since the UNIX epoch.

2.5. Programming in Spicy 79

Spicy, Release 1.4.0

cast<uint-type>(real)→ uint
Converts the value to an unsigned integer type, accepting any loss of information.

real - real→ real
Returns the difference between the two values.

real -= real→ real
Subtracts the second value from the first, assigning the new value.

real / real→ real
Divides the first value by the second.

real /= real→ real
Divides the first value by the second, assigning the new value.

real == real→ bool
Compares the two reals.

real > real→ bool
Compares the two reals.

real >= real→ bool
Compares the two reals.

real < real→ bool
Compares the two reals.

real <= real→ bool
Compares the two reals.

real % real→ real
Computes the modulus of the first real divided by the second.

real * real→ real
Multiplies the first real by the second.

real *= real→ real
Multiplies the first value by the second, assigning the new value.

real ** real→ real
Computes the first real raised to the power of the second.

-real→ real
Inverts the sign of the real.

real + real→ real
Returns the sum of the reals.

real += real→ real
Adds the first real to the second, assigning the new value.

real != real→ bool
Compares the two reals.

80 Chapter 2. Documentation

Spicy, Release 1.4.0

Regular Expression

Spicy provides POSIX-style regular expressions.

Type

• regexp

Constants

• /Foo*bar?/, /X(..)(..)(..)Y/

Regular expressions use the extended POSIX syntax, with a few smaller differences and extensions:

• Supported character classes are: [:lower:], [:upper:], [:digit:], [:blank:].

• \b asserts a word-boundary, \B matches asserts no word boundary.

• \xXX matches a byte with the binary hex value XX (e.g., \xff matches a byte of decimal value 255).

• {#<number>} associates a numerical ID with a regular expression (useful for set matching).

Regular expression constants support two optional attributes:

&anchor Implicitly anchor the expression, meaning it must match at the beginning of the data.

&nosub Compile without support for capturing subexpressions, which makes matching more efficient.

Methods

find(data: bytes)→ tuple<int<32>, bytes>
Searches the regular expression in data and returns the matching part. Different from match, this does not
anchor the expression to the beginning of the data: it will find matches at arbitrary starting positions. Returns a
2-tuple with (1) an integer match indicator with the same semantics as that returned by find; and (2) if a match
has been found, the data that matches the regular expression. (Note: Currently this function has a runtime that’s
quadratic in the size of data; consider using match if performance is an issue.)

match(data: bytes)→ int<32>
Matches the regular expression against data. If it matches, returns an integer that’s greater than zero. If multiple
patterns have been compiled for parallel matching, that integer will be the ID of the matching pattern. Returns -1
if the regular expression does not match the data, but could still yield a match if more data were added. Returns
0 if the regular expression is not found and adding more data wouldn’t change anything. The expression is
considered anchored, as though it starts with an implicit ^ regexp operator, to the beginning of the data.

match_groups(data: bytes)→ vector<bytes>
Matches the regular expression against data. If it matches, returns a vector with one entry for each capture group
defined by the regular expression; starting at index 1. Each of these entries is a view locating the matching bytes.
In addition, index 0 always contains the data that matches the full regular expression. Returns an empty vector if
the expression is not found. The expression is considered anchored, as though it starts with an implicit ^ regexp
operator, to the beginning of the data. This method is not compatible with pattern sets and will throw a runtime
exception if used with a regular expression compiled from a set.

token_matcher()→ hilti::MatchState
Initializes state for matching regular expression incrementally against chunks of future input. The expression is
considered anchored, as though it starts with an implicit ^ regexp operator, to the beginning of the data.

2.5. Programming in Spicy 81

Spicy, Release 1.4.0

Set

Sets are containers for unique elements with fast lookup. They provide iterators to traverse their content, with no
particular ordering.

Types

• set<T> specifies a set with unique elements of type T.

• iterator<set<T>>

Constants

• set(E_1, E_2, ..., E_N) creates a set of N elements. The values E_I must all have the same type.
set() creates an empty set of unknown element type; this cannot be used directly but must be coerced into a
fully-defined set type first.

• set<T>(E_1, E_2, ..., E_N) creates a set of type T, initializing it with the elements E_I. set<T>()
creates an empty set.

Methods

clear()→ void
Removes all elements from the set.

Operators

add set[element]→ void
Adds an element to the set.

begin(<container>)→ <iterator>
Returns an iterator to the beginning of the container’s content.

delete set[element]→ void
Removes an element from the set.

end(<container>)→ <iterator>
Returns an iterator to the end of the container’s content.

set == set→ bool
Compares two sets element-wise.

<any> in set→ bool
Returns true if an element is part of the set.

<any> !in set→ bool
Performs the inverse of the corresponding in operation.

|set|→ uint<64>
Returns the number of elements a set contains.

set != set→ bool
Compares two sets element-wise.

82 Chapter 2. Documentation

Spicy, Release 1.4.0

Iterator Operators

*iterator<set>→ <dereferenced type>
Returns the set element that the iterator refers to.

iterator<set> == iterator<set>→ bool
Returns true if two sets iterators refer to the same location.

iterator<set>++→ iterator<set>
Advances the iterator by one set element, returning the previous position.

++iterator<set>→ iterator<set>
Advances the iterator by one set element, returning the new position.

iterator<set> != iterator<set>→ bool
Returns true if two sets iterators refer to different locations.

Sink

Sinks act as a connector between two units, facilitating feeding the output of one as input into the other. See Sinks for
a full description.

Sinks are special in that they don’t represent a type that’s generally available for instantiation. Instead they need to be
declared as the member of unit using the special sink keyword. You can, however, maintain references to sinks by
assigning the unit member to a variable of type Sink&.

Methods

close()→ void
Closes a sink by disconnecting all parsing units. Afterwards the sink’s state is as if it had just been created (so
new units can be connected). Note that a sink is automatically closed when the unit it is part of is done parsing.
Also note that a previously connected parsing unit can not be reconnected; trying to do so will still throw a
UnitAlreadyConnected exception.

connect(u: strong_ref<unit>)→ void
Connects a parsing unit to a sink. All subsequent write operations to the sink will pass their data on to
this parsing unit. Each unit can only be connected to a single sink. If the unit is already connected, a
UnitAlreadyConnected exception is thrown. However, a sink can have more than one unit connected
to it.

connect_filter(filter: strong_ref<unit>)→ void
Connects a filter unit to the sink that will transform its input transparently before forwarding it for parsing to
other connected units.

Multiple filters can be added to a sink, in which case they will be chained into a pipeline and the data will be
passed through them in the order they have been added. The parsing will then be carried out on the output of
the last filter in the chain.

Filters must be added before the first data chunk is written into the sink. If data has already been written when
a filter is added, an error is triggered.

connect_mime_type(mt: bytes)→ void
Connects parsing units to a sink for all parsers that support a given MIME type. All subsequent write operations
to the sink will pass their data on to these parsing units. The MIME type may have wildcards for type or subtype,
and the method will then connect units for all matching parsers.

2.5. Programming in Spicy 83

Spicy, Release 1.4.0

connect_mime_type(mt: string)→ void
Connects parsing units to a sink for all parsers that support a given MIME type. All subsequent write operations
to the sink will pass their data on to these parsing units. The MIME type may have wildcards for type or subtype,
and the method will then connect units for all matching parsers.

gap(seq: uint<64>, len: uint<64>)→ void
Reports a gap in the input stream. seq is the sequence number of the first byte missing, len is the length of the
gap.

sequence_number()→ uint<64>
Returns the current sequence number of the sink’s input stream, which is one beyond the index of the last byte
that has been put in order and delivered so far.

set_auto_trim(enable: bool)→ void
Enables or disables auto-trimming. If enabled (which is the default) sink input data is trimmed automatically
once in-order and processed. See trim() for more information about trimming.

set_initial_sequence_number(seq: uint<64>)→ void
Sets the sink’s initial sequence number. All sequence numbers given to other methods are then assumed to be
absolute numbers beyond that initial number. If the initial number is not set, the sink implicitly uses zero instead.

set_policy(policy: enum)→ void
Sets a sink’s reassembly policy for ambiguous input. As long as data hasn’t been trimmed, a sink will detect
overlapping chunks. This policy decides how to handle ambiguous overlaps. The default (and currently only)
policy is ReassemblerPolicy::First, which resolves ambiguities by taking the data from the chunk that
came first.

skip(seq: uint<64>)→ void
Skips ahead in the input stream. seq is the sequence number where to continue parsing. If there’s still data
buffered before that position it will be ignored; if auto-skip is also active, it will be immediately deleted as well.
If new data is passed in later that comes before seq, that will likewise be ignored. If the input stream is currently
stuck inside a gap, and seq lies beyond that gap, the stream will resume processing at seq.

trim(seq: uint<64>)→ void
Deletes all data that’s still buffered internally up to seq. If processing the input stream hasn’t reached seq yet,
parsing will also skip ahead to seq.

Trimming the input stream releases the memory, but that means that the sink won’t be able to detect any further
data mismatches.

Note that by default, auto-trimming is enabled, which means all data is trimmed automatically once in-order
and processed.

write(inout data: bytes, [seq: uint<64>], [len: uint<64>])→ void
Passes data on to all connected parsing units. Multiple write calls act like passing input in incrementally: The
units will parse the pieces as if they were a single stream of data. If no sequence number seq is provided, the
data is assumed to represent a chunk to be appended to the current end of the input stream. If a sequence number
is provided, out-of-order data will be buffered and reassembled before being passed on. If len is provided, the
data is assumed to represent that many bytes inside the sequence space; if not provided, len defaults to the length
of data.

If no units are connected, the call does not have any effect. If multiple units are connected and one parsing
unit throws an exception, parsing of subsequent units does not proceed. Note that the order in which the data is
parsed to each unit is undefined.

Todo: The error semantics for multiple units aren’t great.

84 Chapter 2. Documentation

Spicy, Release 1.4.0

Operators

|sink|→ uint<64>
Returns the number of bytes written into the sink so far. If the sink has filters attached, this returns the value
after filtering.

|strong_ref<sink>|→ uint<64>
Returns the number of bytes written into the referenced sink so far. If the sink has filters attached, this returns
the value after filtering.

Sinks provide a set of dedicated unit hooks as callbacks for the reassembly process. These must be implemented on
the reader side, i.e., the unit that’s connected to a sink.

%on_gap(seq: uint64, len: uint64)

%on_overlap(seq: uint64, old: data, new: data)

Triggered when reassembly encounters a 2nd version of data for sequence space already covered earlier. seq is the start
of the overlap, and old/new the previous and the new data, respectively. This hook is just for informational purposes,
the policy set with set_policy() determines how the reassembler handles the overlap.

%on_skipped(seq: uint64)

Any time skip() moves ahead in the input stream, this hook reports the new sequence number seq.

%on_skipped(seq: uint64, data: bytes)

If data still buffered is skipped over through skip(), it will be passed to this hook, before adjusting the current
position. seq is the starting sequence number of the data, data is the data itself.

Stream

A stream is data structure that efficiently represents a potentially large, incrementally provided input stream of raw
data. You can think of it as a bytes type that’s optimized for (1) efficiently appending new chunks of data at the end, and
(2) trimming data no longer needed at the beginning. Other than those two operation, stream data cannot be modified;
there’s no way to change the actual content of a stream once it has been added to it. Streams provide iterators for
traversal, and views for limiting visibility to smaller windows into the total stream.

Streams are key to Spicy’s parsing process, although most of that happens behind the scenes. You will most likely
encounter them when using Random access. They may also be useful for buffering larger volumes of data during
processing.

Types

• stream

• iterator<stream>

• view<stream>

2.5. Programming in Spicy 85

Spicy, Release 1.4.0

Methods

at(i: uint<64>)→ iterator<stream>
Returns an iterator representing the offset i inside the stream value.

freeze()→ void
Freezes the stream value. Once frozen, one cannot append any more data to a frozen stream value (unless it gets
unfrozen first). If the value is already frozen, the operation does not change anything.

is_frozen()→ bool
Returns true if the stream value has been frozen.

trim(inout i: iterator<stream>)→ void
Trims the stream value by removing all data from its beginning up to (but not including) the position i. The
iterator i will remain valid afterwards and will still point to the same location, which will now be the beginning
of the stream’s value. All existing iterators pointing to i or beyond will remain valid and keep their offsets as
well. The effect of this operation is undefined if i does not actually refer to a location inside the stream value.
Trimming is permitted even on frozen values.

unfreeze()→ void
Unfreezes the stream value. A unfrozen stream value can be further modified. If the value is already unfrozen
(which is the default), the operation does not change anything.

Operators

begin(<container>)→ <iterator>
Returns an iterator to the beginning of the container’s content.

end(<container>)→ <iterator>
Returns an iterator to the end of the container’s content.

|stream|→ uint<64>
Returns the number of stream the value contains.

stream += bytes→ stream
Concatenates data to the stream.

stream += view<stream>→ stream
Concatenates another stream’s view to the target stream.

stream != stream→ bool
Compares two stream values lexicographically.

Iterator Methods

is_frozen()→ bool
Returns whether the stream value that the iterator refers to has been frozen.

offset()→ uint<64>
Returns the offset of the byte that the iterator refers to relative to the beginning of the underlying stream value.

86 Chapter 2. Documentation

Spicy, Release 1.4.0

Iterator Operators

*iterator<stream>→ uint<64>
Returns the character the iterator is pointing to.

iterator<stream> - iterator<stream>→ int<64>
Returns the number of stream between the two iterators. The result will be negative if the second iterator points
to a location before the first. The result is undefined if the iterators do not refer to the same stream instance.

iterator<stream> == iterator<stream>→ bool
Compares the two positions. The result is undefined if they are not referring to the same stream value.

iterator<stream> > iterator<stream>→ bool
Compares the two positions. The result is undefined if they are not referring to the same stream value.

iterator<stream> >= iterator<stream>→ bool
Compares the two positions. The result is undefined if they are not referring to the same stream value.

iterator<stream>++→ iterator<stream>
Advances the iterator by one byte, returning the previous position.

++iterator<stream>→ iterator<stream>
Advances the iterator by one byte, returning the new position.

iterator<stream> < iterator<stream>→ bool
Compares the two positions. The result is undefined if they are not referring to the same stream value.

iterator<stream> <= iterator<stream>→ bool
Compares the two positions. The result is undefined if they are not referring to the same stream value.

iterator<stream> + uint<64>→ iterator<stream> (commutative)

Advances the iterator by the given number of stream.

iterator<stream> += uint<64>→ iterator<stream>
Advances the iterator by the given number of stream.

iterator<stream> != iterator<stream>→ bool
Compares the two positions. The result is undefined if they are not referring to the same stream value.

View Methods

advance(i: uint<64>)→ view<stream>
Advances the view’s starting position by i stream, returning the new view.

advance(inout i: iterator<stream>)→ view<stream>
Advances the view’s starting position to a given iterator i, returning the new view. The iterator must be referring
to the same stream values as the view, and it must be equal or ahead of the view’s starting position.

advance_to_next_data()→ view<stream>
Advances the view’s starting position to the next non-gap position. This always advances the input by at least
one byte.

at(i: uint<64>)→ iterator<stream>
Returns an iterator representing the offset i inside the view.

find(needle: bytes)→ tuple<bool, iterator<stream>>
Searches needle inside the view’s content. Returns a tuple of a boolean and an iterator. If needle was found, the
boolean will be true and the iterator will point to its first occurrence. If needle was not found, the boolean will
be false and the iterator will point to the last position so that everything before that is guaranteed to not contain
even a partial match of needle (in other words: one can trim until that position and then restart the search from

2.5. Programming in Spicy 87

Spicy, Release 1.4.0

there if more data gets appended to the underlying stream value). Note that for a simple yes/no result, you
should use the in operator instead of this method, as it’s more efficient.

limit(i: uint<64>)→ view<stream>
Returns a new view that keeps the current start but cuts off the end i characters from that beginning. The returned
view will not be able to expand any further.

offset()→ uint<64>
Returns the offset of the view’s starting position within the associated stream value.

starts_with(b: bytes)→ bool
Returns true if the view starts with b.

sub(begin: uint<64>, end: uint<64>)→ view<stream>
Returns a new view of the subsequence from offset begin to (but not including) offset end. The offsets are
relative to the beginning of the view.

sub(inout begin: iterator<stream>, inout end: iterator<stream>)→ view<stream>
Returns a new view of the subsequence from begin up to (but not including) end.

sub(inout end: iterator<stream>)→ view<stream>
Returns a new view of the subsequence from the beginning of the stream up to (but not including) end.

View Operators

view<stream> == bytes→ bool (commutative)

Compares a stream view and a bytes instance lexicographically.

view<stream> == view<stream>→ bool
Compares the views lexicographically.

bytes in view<stream>→ bool
Returns true if the right-hand-side bytes contains the left-hand-side view as a subsequence.

view<stream> in bytes→ bool
Returns true if the right-hand-side view contains the left-hand-side bytes as a subsequence.

bytes !in view<stream>→ bool
Performs the inverse of the corresponding in operation.

view<stream> !in bytes→ bool
Performs the inverse of the corresponding in operation.

|view<stream>|→ uint<64>
Returns the number of stream the view contains.

view<stream> != bytes→ bool (commutative)

Compares a stream view and a bytes instance lexicographically.

view<stream> != view<stream>→ bool
Compares two views lexicographically.

88 Chapter 2. Documentation

Spicy, Release 1.4.0

String

Strings store readable text that’s associated with a given character set. Internally, Spicy stores them as UTF-8.

Type

• string

Constants

• "Spicy", ""

• When specifying string constants, Spicy assumes them to be in UTF-8.

Methods

encode(charset: enum = hilti::Charset::UTF8)→ bytes
Converts the string into a binary representation encoded with the given character set.

Operators

string == string→ bool
Compares two strings lexicographically.

string % <any>→ string
Renders a printf-style format string.

|string|→ uint<64>
Returns the number of characters the string contains.

string + string→ string
Returns the concatenation of two strings.

string != string→ bool
Compares two strings lexicographically.

Struct

A struct is a heterogeneous container of an ordered set of named values similar to a Tuple. In contrast to tuple
elements, struct fields are mutable.

Type

• struct { IDENTIFIER_1: TYPE_1; ...; IDENTIFIER_N: TYPE_N; }

2.5. Programming in Spicy 89

Spicy, Release 1.4.0

Constants

• Structs can be initialized with a struct initializer, local my_struct: MyStruct = [$FIELD_1
= X_1, ..., $FIELD_N = X_N] where FIELD_I is the label of the corresponding field in
MyStruct’s type.

Operators

struct ?. <field>→ bool
Returns true if the struct’s field has a value assigned (not counting any &default).

struct . <field>→ <field type>
Retrieves the value of a struct’s field. If the field does not have a value assigned, it returns its &default
expression if that has been defined; otherwise it triggers an exception.

struct .? <field>→ <field type>
Retrieves the value of a struct’s field. If the field does not have a value assigned, it returns its &default
expression if that has been defined; otherwise it signals a special non-error exception to the host application
(which will normally still lead to aborting execution, similar to the standard dereference operator, unless the
host application specifically handles this exception differently).

unset struct.<field>→ void
Clears an optional field.

Time

A time value refers to a specific, absolute point of time, specified as the interval from January 1, 1970 UT (i.e., the
Unix epoch). Times are stored with nanosecond resolution, which is retained across all calculations.

Type

• time

Constants

• time(SECS) creates a time from an unsigned integer or real value SECS specifying seconds since the epoch.

• time_ns(NSECS) creates a time from an unsigned integer value NSECS specifying nanoseconds since the
epoch.

Methods

nanoseconds()→ uint<64>
Returns the time as an integer value representing nanoseconds since the UNIX epoch.

seconds()→ real
Returns the time as a real value representing seconds since the UNIX epoch.

90 Chapter 2. Documentation

Spicy, Release 1.4.0

Operators

time - time→ interval
Returns the difference of the times.

time - interval→ time
Subtracts the interval from the time.

time == time→ bool
Compares two time values.

time > time→ bool
Compares the times.

time >= time→ bool
Compares the times.

time < time→ bool
Compares the times.

time <= time→ bool
Compares the times.

time + interval→ time (commutative)

Adds the interval to the time.

time != time→ bool
Compares two time values.

Tuple

Tuples are heterogeneous containers of a fixed, ordered set of types. Tuple elements may optionally be declared and
addressed with custom identifier names. Tuple elements are immutable.

Type

• tuple<[IDENTIFIER_1:]TYPE_1, ...[IDENTIFIER_N:]TYPE_N>

Constants

• (1, "string", True), (1,), ()

• tuple(1, "string", True), tuple(1), tuple()

Operators

(x, ..., y)=<tuple>→ <tuple>
Assigns element-wise to the left-hand-side tuple

tuple == tuple→ bool
Compares two tuples element-wise.

tuple[uint<64>]→ <type of element>
Extracts the tuple element at the given index. The index must be a constant unsigned integer.

tuple . <id>→ <type of element>
Extracts the tuple element corresponding to the given ID.

2.5. Programming in Spicy 91

Spicy, Release 1.4.0

tuple != tuple→ bool
Compares two tuples element-wise.

Unit

Type

• unit { FIELD_1; ...; FIELD_N }

• See Parsing for a full discussion of unit types.

Constants

• Spicy doesn’t support unit constants, but you can initialize unit instances through coercion from a struct
initializer, see Struct.

Todo: This initialization isn’t actually available in Spicy yet (#1036).

Methods

backtrack()→ void
Aborts parsing at the current position and returns back to the most recent &try attribute. Turns into a parse
error if there’s no &try in scope.

connect_filter(filter: strong_ref<unit>)→ void
Connects a separate filter unit to transform the unit’s input transparently before parsing. The filter unit will see
the original input, and this unit will receive everything the filter passes on through forward().

Filters can be connected only before a unit’s parsing begins. The latest possible point is from inside the target
unit’s %init hook.

context()→ <context>&
Returns a reference to the %context instance associated with the unit.

find(needle: bytes, [dir: enum], [start: iterator<stream>])→ optional<iterator<stream>>
Searches a needle pattern inside the input region defined by where the unit began parsing and its current parsing
position. If executed from inside a field hook, the current parasing position will represent the first byte that the
field has been parsed from. By default, the search will start at the beginning of that region and scan forward. If
the direction is spicy::Direcction::Backward, the search will start at the end of the region and scan
backward. In either case, a starting position can also be explicitly given, but must lie inside the same region.

forward(inout data: bytes)→ void
If the unit is connected as a filter to another one, this method forwards transformed input over to that other one
to parse. If the unit is not connected, this method will silently discard the data.

forward_eod()→ void
If the unit is connected as a filter to another one, this method signals that other one that end of its input has been
reached. If the unit is not connected, this method will not do anything.

input()→ iterator<stream>
Returns an iterator referring to the input location where the current unit has begun parsing. If this method is
called before the units parsing has begun, it will throw a runtime exception. Once available, the input position
will remain accessible for the unit’s entire life time.

92 Chapter 2. Documentation

https://github.com/zeek/spicy/issues/1036

Spicy, Release 1.4.0

offset()→ uint<64>
Returns the offset of the current location in the input stream relative to the unit’s start. If executed from inside
a field hook, the offset will represent the first byte that the field has been parsed from. If this method is called
before the unit’s parsing has begun, it will throw a runtime exception. Once parsing has started, the offset will
remain available for the unit’s entire life time.

position()→ iterator<stream>
Returns an iterator to the current position in the unit’s input stream. If executed from inside a field hook, the
position will represent the first byte that the field has been parsed from. If this method is called before the unit’s
parsing has begun, it will throw a runtime exception.

set_input(i: iterator<stream>)→ void
Moves the current parsing position to i. The iterator i must be into the input of the current unit, or the method
will throw a runtime exception.

Operators

unit ?. <field>→ bool
Returns true if the unit’s field has a value assigned (not counting any &default).

unit . <field>→ <field type>
Retrieves the value of a unit’s field. If the field does not have a value assigned, it returns its &default
expression if that has been defined; otherwise it triggers an exception.

unit .? <field>→ <field type>
Retrieves the value of a unit’s field. If the field does not have a value assigned, it returns its &default
expression if that has been defined; otherwise it signals a special non-error exception to the host application
(which will normally still lead to aborting execution, similar to the standard dereference operator, unless the
host application specifically handles this exception differently).

unset unit.<field>→ void
Clears an optional field.

Vector

Vectors are homogeneous containers, holding a set of elements of a given element type. They provide iterators to
traverse their content.

Types

• vector<T> specifies a vector with elements of type T.

• iterator<vector<T>>

Constants

• vector(E_1, E_2, ..., E_N) creates a vector of N elements. The values E_I must all have the same
type. vector() creates an empty vector of unknown element type; this cannot be used directly but must be
coerced into a fully-defined vector type first.

• vector<T>(E_1, E_2, ..., E_N) creates a vector of type T, initializing it with the N elements E_I.
vector<T>() creates an empty vector.

• Vectors can be initialized through coercion from a list value: vector<string> I = ["A", "B",
"C"].

2.5. Programming in Spicy 93

Spicy, Release 1.4.0

Methods

assign(i: uint<64>, x: <any>)→ void
Assigns x to the i*th element of the vector. If the vector contains less than *i elements a sufficient number of
default-initialized elements is added to carry out the assignment.

at(i: uint<64>)→ <iterator>
Returns an iterator referring to the element at vector index i.

back()→ <type of element>
Returns the last element of the vector. It throws an exception if the vector is empty.

front()→ <type of element>
Returns the first element of the vector. It throws an exception if the vector is empty.

pop_back()→ void
Removes the last element from the vector, which must be non-empty.

push_back(x: <any>)→ void
Appends x to the end of the vector.

reserve(n: uint<64>)→ void
Reserves space for at least n elements. This operation does not change the vector in any observable way but
provides a hint about the size that will be needed.

resize(n: uint<64>)→ void
Resizes the vector to hold exactly n elements. If n is larger than the current size, the new slots are filled with
default values. If n is smaller than the current size, the excessive elements are removed.

sub(begin: uint<64>, end: uint<64>)→ vector
Extracts a subsequence of vector elements spanning from index begin to (but not including) index end.

sub(end: uint<64>)→ vector
Extracts a subsequence of vector elements spanning from the beginning to (but not including) the index end as
a new vector.

Operators

begin(<container>)→ <iterator>
Returns an iterator to the beginning of the container’s content.

end(<container>)→ <iterator>
Returns an iterator to the end of the container’s content.

vector == vector→ bool
Compares two vectors element-wise.

vector[uint<64>]→ <type of element>
Returns the vector element at the given index.

|vector|→ uint<64>
Returns the number of elements a vector contains.

vector + vector→ vector
Returns the concatenation of two vectors.

vector += vector→ vector
Concatenates another vector to the vector.

vector != vector→ bool
Compares two vectors element-wise.

94 Chapter 2. Documentation

Spicy, Release 1.4.0

Iterator Operators

*iterator<vector>→ <dereferenced type>
Returns the vector element that the iterator refers to.

iterator<vector> == iterator<vector>→ bool
Returns true if two vector iterators refer to the same location.

iterator<vector>++→ iterator<vector>
Advances the iterator by one vector element, returning the previous position.

++iterator<vector>→ iterator<vector>
Advances the iterator by one vector element, returning the new position.

iterator<vector> != iterator<vector>→ bool
Returns true if two vector iterators refer to different locations.

Void

The void type is place holder for specifying “no type”, such as when a function doesn’t return anything.

Type

• void

Statements

Most of Spicy’s statements are pretty standard stuff. We summarize them briefly in the following.

assert

assert EXPR;

assert EXPR : MSG;

Ensures at runtime that EXPR evaluates to a True value. If it doesn’t, an exception gets thrown that will typically
abort execution. EXPR must either be of boolean type to begin with, or support coercion into it. If MSG is specified, it
must be a string and will be carried along with the exception.

break

break;

Inside a for or while loop, break aborts the loop’s body, with execution then continuing right after the loop construct.

2.5. Programming in Spicy 95

Spicy, Release 1.4.0

confirm

confirm;

If the parser is currently in trial mode, confirm that the unit is successfully synchronized to the input; the unit is then
put into regular parsing mode again. If the unit is not in trial mode confirm has no effect.

See reject to reject the synchronization instead.

confirm can only be invoked from hooks.

for

for (ID in ITERABLE)
BLOCK

Loops over all the elements of an iterable value. ID is an identifier that will become local variable inside BLOCK, with
the current loop element assigned on each round. ITERABLE is a value of any type that provides iterators.

Examples:

module Test;

for (i in [1, 2, 3])
print i;

for (i in b"abc") {
print i;

}

local v = vector("a", "b", "c");

for (i in v)
print i;

spicyc -j for.spicy
1
2
3
97
98
99
a
b
c

96 Chapter 2. Documentation

Spicy, Release 1.4.0

if

if (EXPR)
BLOCK

if (EXPR)
BLOCK

else
BLOCK

A classic if-statement branching based on a boolean expression EXPR.

import

import MODULE;

Makes the content of another module available, see Modules for more.

print

print EXPR;

print EXPR_1, ..., EXPR_N;

Prints one or more expressions to standard output. This is supported for expressions of any type, with each type
knowing how to render its values into a readable representation. If multiple expressions are specified, commas will
separate them in the output.

Note: A particular use-case combines print with string interpolation (i.e., string::Modulo):

module Test;

print "Hello, %s!" % "World";
print "%s=%d" % ("x", 1);

spicyc -j print.spicy
Hello, World!
x=1

reject

reject;

If the parse is currently in trial mode, reject the synchronization; this immediately fails parsing of the unit and raises
the parse error which caused the unit to be put into trial mode. If the unit is not in trial mode this triggers a generic
parse error.

See confirm to confirm the synchronization instead.

reject can only be invoked from hooks.

2.5. Programming in Spicy 97

Spicy, Release 1.4.0

return

return;

return EXPR;

Inside a function or hook, return yields control back to the caller. If it’s a function with a non-void return value, the
return must provide a corresponding EXPR.

stop

stop;

Inside a foreach container hook (see here), aborts the parsing loop without adding the current (final) value to the
container.

switch

switch ([local IDENT =] CTRL_EXPR) {
case EXPR [, ..., EXPR]:

BLOCK;

...

case EXPR [, ..., EXPR]:
BLOCK;

[default:
BLOCK]

}

Branches across a set of alternatives based on the value of an control expression. CTRL_EXPR is compared against all
the case expressions through the type’s equality operator, coercing CTRL_EXPR accordingly first where necessary.
If local IDENT is specified, the blocks have access to a corresponding local variable that holds the value of the
control expression. If no default is given, the runtime will throw an UnhandledSwitchCase exception if
there’s no matching case.

Note: Don’t confuse the switch statement with the unit type’s switch parsing construct. They look similar, but do
different things.

throw

throw EXPR;

Triggers a parse error exception with the message indicated by EXPR. EXPR needs to be a String. throw aborts
parsing.

98 Chapter 2. Documentation

Spicy, Release 1.4.0

try/catch

Todo: This isn’t available in Spicy yet (#89).

try
BLOCK

catch [(TYPE IDENT)]
BLOCK

...

catch [(TYPE IDENT)]
BLOCK

Catches any exception thrown in the try block that match one of the types in any of catch headers, which must be
Exception types. A catch without a type matches any exception. If no catch matches an exception thrown in the
try block, it’ll be propagated further up the stack. A bare throw statement can be used inside a catch block to
rethrow the current exception.

while

while (COND)
BLOCK

while (local IDENT = EXPR; COND)
BLOCK

while introduces a loop that executes BLOCK for as long as the boolean COND evaluates to true. The second form
initializes a new local variable IDENT with EXPR, and makes it available inside both COND and BLOCK.

Error Handling

Todo: Spicy’s error handling remains quite limited at this point, with more to come here in the future.

Exceptions

Exceptions provide Spicy’s primary mechanism for reporting errors. Currently, various parts of the runtime system
throw exceptions if they encounter unexpected situations. In particular, the generated parsers throw ParsingError
exceptions if they find themselves unable to comprehend their input. However, the support for catching and handling
exception is remains minimal at the moment. For now, only ParsingError exceptions can be caught indirectly
through the %on_error unit hook, which internally is nothing else than an exception handler.

Todo: Support for catching other exception throughs try/catch needs to be added still (#89).

2.5. Programming in Spicy 99

https://github.com/zeek/spicy/issues/89
https://github.com/zeek/spicy/issues/89

Spicy, Release 1.4.0

result<T> / error

Todo: Spicy doesn’t have result/error yet (#90).

Error recovery

Support for resynchronizing parser with their input stream after parse errors is discussed in the section on error
recovery.

Conditional Compilation

Spicy scripts offer a basic form of conditional compilation through @if/@else/@endif blocks, similar to a C
preprocessor. For now, this supports only a couple types of conditions that are useful for feature and version testing.
For example, the following @if/@else block branches to different code based on the Spicy version:

@if SPICY_VERSION < 10000
<code for Spicy versions older than 1.0>

@else
<code for Spicy versions equal or newer than 1.0>

@endif

@if directives can take one of the following forms:

@if [!] IDENTIFIER OPERATOR VALUE Compares the value of IDENTIFIER against VALUE.
Supported comparison operators are ==, !=, <, <=, >, >=. See below for valid identifiers. If an
identifier is not defined, its value is assumed to be zero.

@if [!] IDENTIFIER This is a shortcut for @if [!] IDENTIFIER != 0.

By default, Spicy currently provides just one pre-defined identifier:

SPICY_VERSION The current Spicy version in numerical format (e.g., 10000 for version 1.0; see the
output of spicy-config --version-number).

The Spicy plugin for Zeek defines a couple of additional identifiers.

Appendix

Reserved Keywords

The following is a list of keywords reserved by the Spicy language. They cannot be used as identifiers.

False
None
Null
True
__library_type
add
addr
any
assert
assert-exception
attribute

(continues on next page)

100 Chapter 2. Documentation

https://github.com/zeek/spicy/issues/90

Spicy, Release 1.4.0

(continued from previous page)

begin
bitfield
bool
break
bytes
case
cast
catch
confirm
const
const_iterator
constant
continue
cregexp
cstring
default
delete
else
end
enum
exception
export
file
for
foreach
from
function
global
ident
if
import
in
inout
int16
int32
int64
int8
interval
interval_ns
iterator
list
local
map
mark
mod
module
net
new
object
on
optional
port
print
priority
private
property
public

(continues on next page)

2.5. Programming in Spicy 101

Spicy, Release 1.4.0

(continued from previous page)

real
regexp
reject
return
set
sink
stop
stream
string
struct
switch
throw
time
time_ns
timer
try
tuple
type
uint16
uint32
uint64
uint8
unit
unset
var
vector
view
void
while

2.5.3 Library

Module spicy

Types

spicy::AddressFamily

Specifies an address’ IP family.

type AddressFamily = enum {
IPv4, # IP4 address
IPv6 # IPv6 address

};

102 Chapter 2. Documentation

Spicy, Release 1.4.0

spicy::Base64Stream

Captures the state of base64 encoding/decoding for the corresponding library functions.

spicy::BitOrder

Specifies the bit order for individual bit ranges inside a bitfield.

type BitOrder = enum {
LSB0, # bits are interpreted as lowest-significant-bit coming first
MSB0 # bits are interpreted as most-significant-bit coming first

};

spicy::ByteOrder

Specifies byte order for data operations.

type ByteOrder = enum {
Little, # data is in little-endian byte order
Big, # data is in big-endian byte order
Network, # data is in network byte order (same a big endian)
Host # data is in byte order of the host we are executing on

};

spicy::Charset

Specifies the character set for bytes encoding/decoding.

type Charset = enum {
ASCII,
UTF8

};

spicy::MatchState

Captures state for incremental regular expression matching.

spicy::Protocol

Specifies a transport-layer protocol.

type Protocol = enum {
TCP,
UDP,
ICMP

};

2.5. Programming in Spicy 103

Spicy, Release 1.4.0

spicy::RealType

Specifies the type of a real value.

type RealType = enum {
IEEE754_Single, # single precision in IEEE754 format
IEEE754_Double # double precision in IEEE754 format

};

spicy::ReassemblerPolicy

Specifies the policy for a sink’s reassembler when encountering overlapping data.

type ReassemblerPolicy = enum {
First # take the original data & discard the new data

};

spicy::Side

Specifies a side an operation should operate on.

type Side = enum {
Left, # operate on left side
Right, # operate on right side
Both # operate on both sides

};

spicy::Direction

Specifies direction of a search.

type Direction = enum {
Forward, # search forward
Backward, # search backward

};

spicy::ZlibStream

Captures the state of gzip decompression for the corresponding library functions.

Functions

function spicy::zlib_init(window_bits: int64) : ZlibStream

Initializes a zlib stream for decompression.

window_bits: Same as the corresponding parameter for zlib’s inflateInit2 (see https://www.zlib.net/manual.html).

Will throw a ZlibError exception if initialization fails.

104 Chapter 2. Documentation

https://www.zlib.net/manual.html

Spicy, Release 1.4.0

function spicy::zlib_decompress(inout stream_: ZlibStream, data: bytes) :
bytes

Decompresses a chunk of data through the given zlib stream.

function spicy::zlib_finish(inout stream_: ZlibStream) : bytes

Finalizes a zlib stream used for decompression.

function spicy::base64_encode(inout stream_: Base64Stream, data: bytes) :
bytes

Encodes a stream of data into base64.

function spicy::base64_decode(inout stream_: Base64Stream, data: bytes) :
bytes

Decodes a stream of base64 data back into the clear.

function spicy::base64_finish(inout stream_: Base64Stream) : bytes

Finalizes a base64 stream used for decoding or encoding.

function spicy::crc32_init() : uint64

Returns the initialization value for CRC32 computation.

function spicy::crc32_add(crc: uint64, data: bytes) : uint64

Computes a running CRC32.

function spicy::current_time() : time

Returns the current wall clock time.

function spicy::mktime(y: uint64, m: uint64, d: uint64, H: uint64, M:
uint64, S: uint64) : time

Constructs a time value from a tuple of broken-out elements specifying local time.

• y: year (1970-. . .)

• m: month (1-12)

• d: day (1-31)

• H: hour (0-23)

• M: minute (0-59)

• S: second (0-59)

2.5. Programming in Spicy 105

Spicy, Release 1.4.0

function spicy::bytes_to_hexstring(value: bytes) : string

Returns a bytes value rendered as a hex string.

function spicy::getenv(name: string) : optional<string>

Returns the value of an environment variable, if set.

function spicy::strftime(format: string, timestamp: time) : string

Formats a time according to user-specified format string.

This function uses the currently active locale and timezone to format values. Formatted strings cannot exceed 128
bytes.

The format string can contain format specifiers supported by POSIX strftime, see https://pubs.opengroup.org/
onlinepubs/009695399/functions/strftime.html.

This function can raise InvalidArgument if the timestamp could not be converted to local time or formatted.

function spicy::strptime(buf: string, format: string) : time

Parse time from string.

This function uses the currently active locale and timezone to parse values.

The format string can contain format specifiers supported by POSIX strptime, see https://pubs.opengroup.org/
onlinepubs/009695399/functions/strptime.html.

This function raises InvalidArgument if the string could not be parsed with the given format string, or OutOfRange if
the parsed time value cannot be represented.

Module filter

Types

spicy::Zlib

A filter that performs zlib decompression.

type Zlib = unit;

spicy::Base64Decode

A filter that performs Base64 decoding.

type Base64Decode = unit;

106 Chapter 2. Documentation

https://pubs.opengroup.org/onlinepubs/009695399/functions/strftime.html
https://pubs.opengroup.org/onlinepubs/009695399/functions/strftime.html
https://pubs.opengroup.org/onlinepubs/009695399/functions/strptime.html
https://pubs.opengroup.org/onlinepubs/009695399/functions/strptime.html

Spicy, Release 1.4.0

2.5.4 Examples

We collect some example Spicy parsers here that come with a growing collection of Spicy-based Zeek analyzers.
Check out that package and its dependencies for more examples.

TFTP

A TFTP analyzer for Zeek, implementing the original RFC 1350 protocol (no extensions). It comes with a Zeek script
producing a typical tftp.log log file.

This analyzer is a good introductory example because the Spicy side is pretty straight-forward. The Zeek-side logging
is more tricky because of the data transfer happening over a separate network session.

• TFTP Spicy grammar

• Spicy code for TFTP analyzer Zeek integration

• TFTP Zeek analyzer definition (EVT)

• Zeek TFTP script for logging

HTTP

A nearly complete HTTP parser. This parser was used with the original Spicy prototype to compare output with Zeek’s
native handwritten HTTP parser. We observed only negligible differences.

• HTTP Spicy grammar

• Spicy code for HTTP analyzer Zeek integration

• HTTP Zeek analyzer definition (EVT)

DNS

A comprehensive DNS parser. This parser was used with the original Spicy prototype to compare output with Zeek’s
native handwritten DNS parser. We observed only negligible differences.

The DNS parser is a good example of using random access.

• DNS Spicy grammar

• Spicy code for DNS analyzer Zeek integration

• DNS Zeek analyzer definition (EVT)

DHCP

A nearly complete DHCP parser. This parser extracts most DHCP option messages understood by Zeek. The Zeek
integration is almost direct and most of the work is in formulating the parser itself.

• DHCP Spicy grammar

• Spicy code for DHCP analyzer Zeek integration

• DHCP analyzer Zeek analyzer definition (EVT)

2.5. Programming in Spicy 107

https://github.com/zeek/spicy-analyzers
https://github.com/zeek/spicy-analyzers/blob/main/zkg.meta
https://github.com/zeek/spicy-tftp/blob/main/analyzer/analyzer.spicy
https://github.com/zeek/spicy-tftp/blob/main/analyzer/zeek_analyzer.spicy
https://github.com/zeek/spicy-tftp/blob/main/analyzer/analyzer.evt
https://github.com/zeek/spicy-tftp/blob/main/analyzer/main.zeek
https://github.com/zeek/spicy-http/blob/main/analyzer/analyzer.spicy
https://github.com/zeek/spicy-http/blob/main/analyzer/zeek_analyzer.spicy
https://github.com/zeek/spicy-http/blob/main/analyzer/analyzer.evt
https://github.com/zeek/spicy-dns/blob/main/analyzer/analyzer.spicy
https://github.com/zeek/spicy-dns/blob/main/analyzer/zeek_analyzer.spicy
https://github.com/zeek/spicy-dns/blob/main/analyzer/analyzer.evt
https://github.com/zeek/spicy-dhcp/blob/main/analyzer/analyzer.spicy
https://github.com/zeek/spicy-dhcp/blob/main/analyzer/zeek_analyzer.spicy
https://github.com/zeek/spicy-dhcp/blob/main/analyzer/analyzer.evt

Spicy, Release 1.4.0

2.5.5 Debugging

It can be challenging to track down the specifics of what a parser is doing (or not doing) because often there’s no
directly observable effect. To make that easier, Spicy comes with debugging support that helps during parser develop-
ment.

Generally, debugging support requires running spicyc or spicy-driver with option -d; that enables generating
debug versions of the generated C++ code. In addition, the option -X <tag> may enable additional, more expensive
debug instrumentation, as discussed below. Any use of -X implicitly turns on -d.

Debug Hooks

The simplest way to learn more about what’s going on is to add hooks with print statements to your grammar.
That’s rather disruptive though, and hence there are also special %debug unit hooks which only get compiled into the
resulting code if spicy-driver is run with debugging enabled (-d):

module Test;

public type test = unit {
a: /1234/ %debug {

print self.a;
}

b: /567890/;

on b %debug { print self.b; }
};

printf "1234567890" | spicy-driver -d debugging.spicy
1234
567890

printf "1234567890" | spicy-driver debugging.spicy

Debug Streams

A second form of debugging support uses runtime debug streams that instrument the generated parsers to log ac-
tivity as they are parsing their input. If you run spicy-driver with -d, you can set the environment variable
HILTI_DEBUG to a set of debug stream names to select the desired information (see below for the list). Execution
will then print debug information to standard error:

> echo "GET /index.html HTTP/1.0" | HILTI_DEBUG=spicy spicy-driver -d http-request.
→˓spicy
[spicy] Request::RequestLine
[spicy] method = GET
[spicy] anon_2 =
[spicy] uri = /index.html
[spicy] anon_3 =
[spicy] Request::Version
[spicy] anon = HTTP/
[spicy] number = 1.0
[spicy] version = [$anon=b"HTTP/", $number=b"1.0"]
[spicy] anon_4 = \n
GET, /index.html, 1.0

108 Chapter 2. Documentation

Spicy, Release 1.4.0

The available debug streams include:

spicy Logs unit fields and variables as they receive values. This is often the most helpful output as it shows rather
concisely what the parser is doing, and in particular how far it gets in cases where it doesn’t parse something
correctly.

spicy-verbose Logs various internals about the parsing process, including the grammar rules currently being
parsed, the current input, and lexer tokens.

This stream is primarily intended for debugging the Spicy compiler itself, but it can be helpful also in particular
for understanding the data that remains to be parsed.

hilti-trace This is a HILTI-level debug stream that records every HILTI instruction being executed. To use this,
you need to run spicy-driver with -X trace.

This stream is primarily intended for debugging the Spicy compiler itself.

hilti-flow This is a HILTI-level debug level recording flow information like function calls. To use this, you need
to run spicy-driver with -X flow.

This stream is primarily intended for debugging the Spicy compiler itself, although it may also be helpful to
understand the internal control flow when writing a grammar.

Multiple streams can be enabled by separating them with colons.

Exceptions

When encountering runtime errors, Spicy by default triggers C++ exceptions that bubble up back to the host
application. If not handled there, execution will stop. For debugging, you can also let the Spicy runtime
system abort() with a core dump, instead of throwing an exception, by running spicy-driver with
--abort-on-exceptions. That especially helps inside a debugger.

If in addition you specify --show-backtraces as well, it will print a stack trace before aborting (assuming support
for that is available on your platform).

Inspecting Generated Code

Using spicyc you can inspect the code that’s being generated for a given Spicy grammar:

• spicyc -p outputs the intermediary HILTI code. The code tends to be pretty intuitively readable. Even if
you don’t know all the specifics of HILTI, much of the code is rather close to Spicy itself. (Per above, you can
trace the generated HILTI code as it executes by activating the hilti-trace debug stream).

• spicyc -c outputs the final C++ code. If you add -L, the output will also include additional code generated
by HILTI’s linker (which enables cross-module functionality).

• When JITing a grammar with spicyc -j, running with -D dump-code will record all generated interme-
diary code (HILTI code, C++ code, object files) into files dbg.* inside the current directory.

2.5. Programming in Spicy 109

Spicy, Release 1.4.0

Skipping validation

When working on the Spicy code, it can be helpful to disable internal validation of generated HILTI code with -V.
That way, one can often still see the HILTI code even if it’s malformed. Note, however, that Spicy may end up crashing
if broken HILTI code gets passed into later stages.

2.6 Toolchain

2.6.1 spicy-build

spicy-build is a shell frontend that compiles Spicy source code into a standalone executable by running spicyc to
generate the necessary C++ code, then spawning the system compiler to compile and link that.

spicy-build [options] <input files>

-d Build a debug version.
-o <file> Destination name for the compiled executable; default is "a.out".
-t Do not delete tmp files (useful for inspecting, and use with debugger)
-v Verbose output, display command lines executing.
-S Do not compile the "spicy-driver" host application into executable.

Input files may be anything that spicyc can compile to C++.

2.6.2 spicy-config

spicy-config reports information about Spicy’s build & installation options.

Usage: spicy-config [options]

Available options:

--bindir Prints the path to the directory where binaries are
→˓installed.

--build Prints "debug" or "release", depending on the build
→˓configuration.

--cmake-path Prints the path to Spicy-provided CMake modules
--cxx Print the path to the C++ compiler used to build Spicy
--cxxflags Print flags for C++ compiler when compiling generated

→˓code statically
--cxxflags-hlto Print flags for C++ compiler when building precompiled

→˓HLTO libraries
--debug Output flags for working with debugging versions.
--distbase Print path of the Spicy source distribution.
--dynamic-loading Adjust --ldflags for host applications that dynamically

→˓load precompiled modules
--have-toolchain Prints 'yes' if the Spicy toolchain was built, 'no'

→˓otherwise.
--have-zeek Prints 'yes' if the Spicy was compiled with Zeek support,

→˓'no' otherwise.
--help Print this usage summary
--include-dirs Prints the Spicy runtime's C++ include directories
--ldflags Print flags for linker when compiling generated code

→˓statically

(continues on next page)

110 Chapter 2. Documentation

Spicy, Release 1.4.0

(continued from previous page)

--ldflags-hlto Print flags for linker linker when building precompiled
→˓HLTO libraries

--libdirs Print standard Spicy library directories.
--prefix Print path of installation
--spicy-build Print the path to the spicy-build script.
--spicyc Print the path to the spicyc binary.
--version Print the Spicy version as a string.
--version-number Print the Spicy version as a numerical value.
--zeek Print the path to the Zeek executable
--zeek-include-dirs Print the Spicy runtime's C++ include directories
--zeek-module-path Print the path of the directory the Zeek plugin searches

→˓for *.hlto modules
--zeek-plugin-path Print the path to go into ZEEK_PLUGIN_PATH for enabling

→˓the Zeek Spicy plugin
--zeek-prefix Print the path to the Zeek installation prefix
--zeek-version Print the Zeek version (empty if no Zeek available)
--zeek-version-number Print the Zeek version as a numerical value (zero if no

→˓Zeek available)

2.6.3 spicyc

spicyc compiles Spicy code into C++ output, optionally also executing it directly through JIT.

Usage: spicyc [options] <inputs>

Options controlling code generation:

-c | --output-c++ Print out all generated C++ code (including linker
→˓glue by default).
-d | --debug Include debug instrumentation into generated code.
-e | --output-all-dependencies Output list of dependencies for all compiled

→˓modules.
-j | --jit-code Fully compile all code, and then execute it unless -

→˓-output-to gives a file to store it
-l | --output-linker Print out only generated HILTI linker glue code.
-o | --output-to <path> Path for saving output.
-p | --output-hilti Just output parsed HILTI code again.
-v | --version Print version information.
-A | --abort-on-exceptions When executing compiled code, abort() instead of

→˓throwing HILTI exceptions.
-B | --show-backtraces Include backtraces when reporting unhandled

→˓exceptions.
-C | --dump-code Dump all generated code to disk for debugging.
-D | --compiler-debug <streams> Activate compile-time debugging output for given

→˓debug streams (comma-separated; 'help' for list).
-E | --output-code-dependencies Output list of dependencies for all compiled

→˓modules that require separate compilation of their own.
-L | --library-path <path> Add path to list of directories to search when

→˓importing modules.
-O | --optimize Build optimized release version of generated code.
-P | --output-prototypes Output C++ header with prototypes for public

→˓functionality.
-R | --report-times Report a break-down of compiler's execution time.
-S | --skip-dependencies Do not automatically compile dependencies during

→˓JIT.

(continues on next page)

2.6. Toolchain 111

Spicy, Release 1.4.0

(continued from previous page)

-T | --keep-tmps Do not delete any temporary files created.
-V | --skip-validation Don't validate ASTs (for debugging only).
-X | --debug-addl <addl> Implies -d and adds selected additional

→˓instrumentation (comma-separated; see 'help' for list).

-Q | --include-offsets Include stream offsets of parsed data in output.

Inputs can be .hlt, .spicy, .cc/.cxx, *.hlto.

spicyc also supports the following environment variables to control the compilation process:

SPICY_PATH Replaces the built-in search path for *.spicy source files.

SPICY_CACHE Location for storing precompiled C++ headers. Default is ~/.cache/spicy/
<VERSION>.

HILTI_CXX Specifies the path to the C++ compiler to use.

HILTI_CXX_COMPILER_LAUNCHER Specifies a command to prefix compiler invocations with dur-
ing JIT. This can e.g., be used to use a compiler cache like ccache. If Spicy was configured
with e.g., --with-hilti-compiler-launcher=ccache (the equivalent CMake option is
HILTI_COMPILER_LAUNCHER) ccache would automatically be used during JIT. Setting this
variable to an empty value disables use of ccache in that case.

HILTI_CXX_INCLUDE_DIRS Specified additional, colon-separated C++ include directory to search
for header files.

HILTI_JIT_SEQUENTIAL Set to prevent spawning multiple concurrent C++ compiler instances.

HILTI_OPTIMIZER_PASSES Colon-separated list of optimizer passes to activate. If unset uses the
default-enabled set.

HILTI_PATH Replaces the built-in search path for *.hlt source files.

HILTI_PRINT_SETTINGS Set to see summary of compilation options.

2.6.4 spicy-driver

spicy-driver is a standalone Spicy host application that compiles and executes Spicy parsers on the fly, and then
feeds them data for parsing from standard input.

Usage: cat <data> | spicy-driver [options] <inputs> ...

Options:

-d | --debug Include debug instrumentation into generated code.
-i | --increment <i> Feed data incrementally in chunks of size n.
-f | --file <path> Read input from <path> instead of stdin.
-l | --list-parsers List available parsers and exit.
-p | --parser <name> Use parser <name> to process input. Only neeeded if

→˓more than one parser is available.
-v | --version Print version information.
-A | --abort-on-exceptions When executing compiled code, abort() instead of

→˓throwing HILTI exceptions.
-B | --show-backtraces Include backtraces when reporting unhandled

→˓exceptions.
-D | --compiler-debug <streams> Activate compile-time debugging output for given

→˓debug streams (comma-separated; 'help' for list). (continues on next page)

112 Chapter 2. Documentation

https://ccache.dev/

Spicy, Release 1.4.0

(continued from previous page)

-F | --batch-file <path> Read Spicy batch input from <path>; see docs for
→˓description of format.
-L | --library-path <path> Add path to list of directories to search when

→˓importing modules.
-O | --optimize Build optimized release version of generated code.
-R | --report-times Report a break-down of compiler's execution time.
-S | --skip-dependencies Do not automatically compile dependencies during

→˓JIT.
-U | --report-resource-usage Print summary of runtime resource usage.
-X | --debug-addl <addl> Implies -d and adds selected additional

→˓instrumentation (comma-separated; see 'help' for list).

Environment variables:

SPICY_PATH Colon-separated list of directories to search for
→˓modules. In contrast to --library-paths using this flag overwrites builtin paths.

Inputs can be .hlt, .spicy, .cc/.cxx, *.o, *.hlto.

spicy-driver supports the same environment variables as spicyc.

Specifying the parser to use

If there’s only single public unit in the Spicy source code, spicy-driver will automatically use that for pars-
ing its input. If there’s more than one public unit, you need to tell spicy-driver which one to use through its
--parser (or -p) option. To see the parsers that are available, use --list-parsers (or -l).

In addition to the names shown by --list-parsers, you can also specify a parser through a port or MIME
type if the corresponding unit defines them through properties. For example, if a unit defines %port = 80/tcp,
you can use spicy-driver -p 80/tcp to select it. To specify a direction, add either %orig or %resp (e.g.,
-p 80/tcp%resp); then only units with a port tagged with an &originator or &responder attribute, re-
spectively, will be considered. If a unit defines %mime-type = application/test, you can select it through
spicy-driver -p application/test. (Note that there must be exactly one unit with a matching property
for this all to work, otherwise you’ll get an error message.)

Batch input

spicy-driver provides a batch input mode for processing multiple interleaved input flows in parallel, mimicking
how host applications like Zeek would be employing Spicy parsers for processing many sessions concurrently. The
batch input must be prepared in a specific format (see below) that provides embedded meta information about the
contained flows of input. The easiest way to generate such a batch is a Zeek script coming with Spicy.
If you run Zeek with this script on a PCAP trace, it will record the contained TCP and UDP sessions into a Spicy batch
file:

zeek -b -r http/methods.trace record-spicy-batch.zeek
tracking [orig_h=128.2.6.136, orig_p=46562/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
tracking [orig_h=128.2.6.136, orig_p=46563/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
tracking [orig_h=128.2.6.136, orig_p=46564/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
tracking [orig_h=128.2.6.136, orig_p=46565/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
tracking [orig_h=128.2.6.136, orig_p=46566/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
tracking [orig_h=128.2.6.136, orig_p=46567/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
[...]
tracking [orig_h=128.2.6.136, orig_p=46608/tcp, resp_h=173.194.75.103, resp_p=80/tcp]

(continues on next page)

2.6. Toolchain 113

Spicy, Release 1.4.0

(continued from previous page)

tracking [orig_h=128.2.6.136, orig_p=46609/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
tracking [orig_h=128.2.6.136, orig_p=46610/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
recorded 49 sessions total
output in batch.dat

You will now have a file batch.dat that you can use with spicy-driver -F batch.data

The batch created by the Zeek script will select parsers for the contained sessions through well-known ports. That
means your units need to have a %port property matching the responder port of the sessions you want them to parse.
So for the HTTP trace above, our Spicy source code would need to provide a public unit with property %port =
80/tcp;.

In case you want to create batches yourself, we document the batch format in the following. A batch needs to start with
a line !spicy-batch v2<NL>, followed by lines with commands of the form @<tag> <arguments><NL>.

There are two types of input that the batch format can represent: (1) individual, uni-directional flows; and (2) bi-
directional connections consisting in turn of one flow per side. The type is determined through an initial command:
@begin-flow starts a flow flow, and @begin-conn starts a connection. Either form introduces a unique, free-form
ID that subsequent commands will then refer to. The following commands are supported:

@begin-flow FID TYPE PARSER<NL> Initializes a new input flow for parsing, associating the unique ID FID
with it. TYPE must be either stream for stream-based parsing (think: TCP), or block for parsing each data
block independent of others (think: UDP). PARSER is the name of the Spicy parser to use for parsing this
input flow, given in the same form as with spicy-driver’s --parser option (i.e., either as a unit name, a
%port, or a %mime-type).

@begin-conn CID TYPE ORIG_FID ORIG_PARSER RESP_FID RESP_PARSER<NL> Initializes a new
input connection for parsing, associating the unique connection ID CID with it. TYPE must be either stream
for stream-based parsing (think: TCP), or block for parsing each data block independent of others (think:
UDP). ORIG_FID is separate unique ID for the originator-side flow, and ORIG_PARSER is the name of the
Spicy parser to use for parsing that flow. RESP_FID and RESP_PARSER work accordingly for the responder-
side flow. The parsers can be given in the same form as with spicy-driver’s --parser option (i.e., either
as a unit name, a %port, or a %mime-type).

@data FID SIZE<NL> A block of data for the input flow FID. This command must be followed directly by
binary data of length SIZE, plus a final newline character. The data represents the next chunk of input for
the corresponding flow. @data can be used only inside corresponding @begin-* and @end-* commands
bracketing the flow ID.

@end-flow FID<NL> Finalizes parsing of the input flow associated with FID, releasing all state. This must come
only after a corresponding @begin-flow command, and every @begin-flow must eventually be followed
by an @end-flow.

@end-conn CID<NL> Finalizes parsing the input connection associated with CID, releasing all state (includ-
ing for its two flows). This must come only after a corresponding @begin-conn command, and every
@begin-conn must eventually be followed by an @end-end.

114 Chapter 2. Documentation

Spicy, Release 1.4.0

2.6.5 spicy-dump

spicy-dump is a standalone Spicy host application that compiles and executes Spicy parsers on the fly, feeds them
data for processing, and then at the end prints out the parsed information in either a readable, custom ASCII format,
or as JSON (--json or -J). By default, spicy-dump disables showing the output of Spicy print statements,
--enable-print or -P reenables that.

Usage: cat <data> | spicy-dump [options] <inputs> ...

Options:

-d | --debug Include debug instrumentation into generated code.
-f | --file <path> Read input from <path> instead of stdin.
-l | --list-parsers List available parsers and exit.
-p | --parser <name> Use parser <name> to process input. Only neeeded if

→˓more than one parser is available.
-v | --version Print version information.
-A | --abort-on-exceptions When executing compiled code, abort() instead of

→˓throwing HILTI exceptions.
-B | --show-backtraces Include backtraces when reporting unhandled

→˓exceptions.
-D | --compiler-debug <streams> Activate compile-time debugging output for given

→˓debug streams (comma-separated; 'help' for list).
-L | --library-path <path> Add path to list of directories to search when

→˓importing modules.
-J | --json Print JSON output.
-O | --optimize Build optimized release version of generated code.
-P | --enable-print Show output of Spicy 'print' statements (default:

→˓off).
-Q | --include-offsets Include stream offsets of parsed data in output.
-R | --report-times Report a break-down of compiler's execution time.
-S | --skip-dependencies Do not automatically compile dependencies during

→˓JIT.
-X | --debug-addl <addl> Implies -d and adds selected additional

→˓instrumentation (comma-separated; see 'help' for list).

Environment variables:

SPICY_PATH Colon-separated list of directories to search for
→˓modules. In contrast to --library-paths using this flag overwrites builtin paths.

Inputs can be .hlt, .spicy, *.spicy *.hlt *.hlto.

2.6. Toolchain 115

Spicy, Release 1.4.0

2.7 Zeek Integration

While Spicy itself remains application independent, transparent integration into Zeek has been a primary goal for its
development. To facilitate adding new protocol and file analyzers to Zeek, there is a Zeek plugin that makes Spicy
parsers accessible to Zeek’s processing pipeline. In the following, we dig deeper into how to use all of this.

2.7.1 Terminology

In Zeek, the term “analyzer” refers generally to a component that processes a particular protocol (“protocol analyzer”),
file format (“file analyzer”), or low-level packet structure (“packet analyzer”). “Processing” here means more than just
parsing content: An analyzer controls when it wants to be used (e.g., with connections on specific ports, or with files
of a specific MIME type); what events to generate for Zeek’s scripting layer; and how to handle any errors occurring
during parsing. While Spicy itself focuses just on the parsing part, the Spicy plugin makes it possible to provide
the remaining pieces to Zeek, turning a Spicy parser into a full Zeek analyzer. That’s what we refer to as a “Spicy
(protocol/file/packet) analyzer” for Zeek.

2.7.2 Installation

To use the Spicy plugin with Zeek, it first needs to be installed. The recommended way to do so is through Zeek’s
package manager zkg. If you have not yet installed zkg, follow its instructions.

You will need to have Spicy and Zeek installed as well of course. Before proceeding, make sure spicy-config
and zeek-config are in your PATH:

which spicy-config
/opt/spicy/bin/spicy-config

which zeek-config
/usr/local/zeek/bin/zeek-config

Package Installation

The easiest way to install the plugin is through Zeek’s package manager:

zkg install zeek/spicy-plugin

This will pull down the plugin’s package, compile and test the plugin, and then install and activate it. That process may
take a bit to complete. To check afterwards that the plugin has become available, run zeek -N _Zeek::Spicy, it
should show output like this:

zeek -N _Zeek::Spicy
_Zeek::Spicy - Support for Spicy parsers (*.spicy, *.evt, *.hlto) (dynamic, version x.
→˓y.z)

By default, zkg will install the most recent release version of the plugin. If you want to install the current development
version, use zkg install --version main zeek/spicy-plugin instead.

If you want to develop your own Spicy analyzers for Zeek, you will need a tool that comes with the plugin’s installation:
spicyz. If you are using a recent version of zkg (>= 2.8.0), it’s easy to make the tool show up in your PATH: Either
run zkg env (see this configuration advice) or update your PATH manually:

export PATH=$(zkg config bin_dir):$PATH

116 Chapter 2. Documentation

https://zeek.org
https://github.com/zeek/spicy-plugin
https://docs.zeek.org/projects/package-manager/en/stable
https://docs.zeek.org/projects/package-manager/en/stable/quickstart.html
https://docs.zeek.org/projects/package-manager/en/stable/quickstart.html?highlight=zkg%20env#advanced-configuration

Spicy, Release 1.4.0

If you are using an older version of zkg (including the version coming with Zeek 4.0), it’s a bit more difficult to
find spicyz: it will be inside your zkg state directory at <state_dir>/clones/package/spicy-plugin/
build/bin/spicyz. We recommend adding that directory to your PATH. (The state directory is usually either
<zeek-prefix>/var/lib/zkg or ~/.zkg, depending on how you have set up zkg.)

Manual Installation

If you prefer, you can also compile the Zeek plugin yourself, outside of the package manager by cloning the plugin’s
GitHub repository and building it through CMake. See the instructions in its README. This will install spicyz into
<prefix>/bin.

Note: Developer’s note: It works to point ZEEK_PLUGIN_PATH directly to the plugin’s build directory, without in-
stalling it first. If you are building the plugin as part of the Spicy distribution, it will land in <build-directory>/
zeek/spicy-plugin.

2.7.3 Interface Definitions (“evt files”)

Per above, a Spicy analyzer for Zeek does more than just parsing data. Accordingly, we need to tell the Zeek plugin a
couple of additional pieces about analyzers we want it to provide to Zeek:

Analyzer setup The plugin needs to know what type of analyzers we are creating, when we want Zeek to activate
them, and what Spicy unit types to use as their parsing entry point.

Event definitions We need to tell the Spicy plugin what Zeek events to provide and when to trigger them.

We define all of these through custom interface definition files that the Spicy plugin reads in. These files use an *.evt
extension, and the following subsections discuss their content in more detail.

Generally, empty lines and comments starting with # are ignored in an *.evt.

Note: The syntax for *.evt files comes with some legacy pieces that aren’t particularly pretty. We may clean that
up at some point.

Analyzer Setup

You can define both protocol analyzers and file analyzers in an *.evt file, per the following.

Protocol Analyzer

To define a protocol analyzer, add a new section to an *.evt file that looks like this:

protocol analyzer ANALYZER_NAME over TRANSPORT_PROTOCOL:
PROPERTY_1,
PROPERTY_2,
...
PROPERTY_N;

Here, ANALYZER_NAME is a name to identify your analyzer inside Zeek. You can choose names arbitrarily
as long as they are unique. As a convention, however, we recommend name with a spicy::* prefix (e.g.,
spicy::BitTorrent).

2.7. Zeek Integration 117

https://github.com/zeek/spicy-plugin

Spicy, Release 1.4.0

On the Zeek-side, through some normalization, these names automatically turn into tags
added to Zeek’s Analyzer::Tag enum. For example, spicy::BitTorrent turns into
Analyzer::ANALYZER_SPICY_BITTORRENT.

The analyzer’s name is also what goes into Zeek signatures to activate an analyzer DPD-style. If the name is
spicy::BitTorrent, you’d write enable "spicy::BitTorrent" into the signature.

Note: Once you have made your analyzers available to Zeek (which we will discuss below), running zeek -NN
_Zeek::Spicy will show you a summary of what’s now available, including their Zeek-side names and tags.

TRANSPORT_PROTOCOL can be either tcp or udp, depending on the transport-layer protocol that your new analyzer
wants to sit on top of.

Following that initial protocol analyzer ... line, a set of properties defines further specifics of your analyzer.
The following properties are supported:

parse [originator|responder] with SPICY_UNIT Specifies the top-level Spicy unit(s)
the analyzer uses for parsing payload, with SPICY_UNIT being a fully-qualified Spicy-side type
name (e.g. HTTP::Request). The unit type must have been declared as public in Spicy.

If originator is given, the unit is used only for parsing the connection’s originator-side payload;
and if responder is given, only for responder-side payload. If neither is given, it’s used for both
sides. In other words, you can use different units per side by specifying two properties parse
originator with ... and parse responder with

port PORT or ports { PORT_1, ..., PORT_M } Specifies one or more well-known ports for
which you want Zeek to automatically activate your analyzer with corresponding connections. Each
port must be specified in Spicy’s syntax for port constants (e.g., 80/tcp), or as a port range
PORT_START-PORT_END where start and end port are port constants forming a closed interval.
The ports’ transport protocol must match that of the analyzer.

Note: The plugin will also honor any %port meta data property that the responder-side
SPICY_UNIT may define (as long as the attribute’s direction is not originator).

replaces ANALYZER_NAME Disables an existing analyzer that Zeek already provides internally, al-
lowing you to replace a built-in analyzer with a new Spicy version. ANALYZER_NAME is the Zeek-
side name of the analyzer. To find that name, inspect the output of zeek -NN for available analyz-
ers:

zeek -NN | grep '\[Analyzer\]'
...
[Analyzer] SMTP (ANALYZER_SMTP, enabled)
...

Here, SMTP is the name you would write into replaces to disable the built-in SMTP analyzer.

As a full example, here’s what a new HTTP analyzer could look like:

protocol analyzer spicy::HTTP over TCP:
parse originator with HTTP::Requests,
parse responder with HTTP::Replies,
port 80/tcp,
replaces HTTP;

118 Chapter 2. Documentation

Spicy, Release 1.4.0

Packet Analyzer

Defining packet analyzers works quite similar to protocol analyzers through *.evt sections like this:

packet analyzer ANALYZER_NAME:
PROPERTY_1,
PROPERTY_2,
...
PROPERTY_N;

Here, ANALYZER_NAME is again a name to identify your analyzer inside Zeek. On the Zeek-side, the name will be
added to Zeek’s PacketAnalyzer::Tag enum.

Packet analyzers support just one property currently:

parse with SPICY_UNIT Specifies the top-level Spicy unit the analyzer uses for parsing each
packet, with SPICY_UNIT being a fully-qualified Spicy-side type name. The unit type must have
been declared as public in Spicy.

As a full example, here’s what a new analyzer could look like:

packet analyzer spicy::RawLayer: parse with Raw Layer::Packet;

In addition to the Spicy-side configuration, packet analyzers also need to be registered with Zeek
inside a zeek_init event handler; see the Zeek documentation for more. You will need to
use the PacketAnalyzer::try_register_packet_analyzer_by_name for registering Spicy analyzers (not
register_packet_analyzer), with the name of the new Spicy analyzer being ANALYZER_NAME. zeek
-NN shows the names of existing analyzers. For example:

event zeek_init()
{
if (! PacketAnalyzer::try_register_packet_analyzer_by_name("Ethernet", 0x88b5,

→˓"spicy::RawLayer"))
Reporter::error("cannot register Spicy analyzer");

}

File Analyzer

Defining file analyzers works quite similar to protocol analyzers, through *.evt sections like this:

file analyzer ANALYZER_NAME:
PROPERTY_1,
PROPERTY_2,
...
PROPERTY_N;

Here, ANALYZER_NAME is again a name to identify your analyzer inside Zeek. On the Zeek-side, the name will be
added to Zeek’s Files::Tag enum.

File analyzers support the following properties:

parse with SPICY_UNIT Specifies the top-level Spicy unit the analyzer uses for parsing file con-
tent, with SPICY_UNIT being a fully-qualified Spicy-side type name. The unit type must have
been declared as public in Spicy.

mime-type MIME-TYPE Specifies a MIME type for which you want Zeek to automatically activate
your analyzer when it sees a corresponding file on the network. The type is a specified in standard
type/subtype notion, without quotes (e.g., image/gif).

2.7. Zeek Integration 119

https://docs.zeek.org/en/master/frameworks/packet-analysis.html
https://docs.zeek.org/en/master/scripts/base/bif/packet_analysis.bif.zeek.html#id-PacketAnalyzer::try_register_packet_analyzer_by_name

Spicy, Release 1.4.0

Note: The plugin will also honor any %mime-type meta data property that the SPICY_UNIT
may define.

Note: Keep in mind that Zeek identifies MIME types through “content sniffing” (i.e., similar to
libmagic), and usually not by protocol-level headers (e.g., not through HTTP’s Content-Type
header). If in doubt, examine files.log for what it records as a file’s type.

replaces ANALYZER_NAME Disables an existing file analyzer that Zeek already provides internally,
allowing you to replace a built-in analyzer with a new Spicy version. ANALYZER_NAME is the
Zeek-side name of the analyzer. To find that name, inspect the output of zeek -NN for available
analyzers:

zeek -NN | grep '\[File Analyzer\]'
...
[File Analyzer] PE (ANALYZER_PE, enabled)
...

Here, PE is the name you would write into replaces to disable the built-in PE analyzer.

Note: This feature requires Zeek >= 4.1

As a full example, here’s what a new GIF analyzer could look like:

file analyzer spicy::GIF:
parse with GIF::Image,
mime-type image/gif;

Event Definitions

To define a Zeek event that you want the Spicy plugin to trigger, you add lines of the form:

on HOOK_ID -> event EVENT_NAME(ARG1_, ..., ARG_N);

on HOOK_ID if COND -> event EVENT_NAME(ARG1_, ..., ARG_N);

The Zeek plugin automatically derives from this everything it needs to register new events with Zeek, including a
mapping of the arguments’ Spicy types to corresponding Zeek types. More specifically, these are the pieces going into
such an event definition:

on HOOK_ID A Spicy-side ID that defines when you want to trigger the event. This works just like a on ...
unit hook, and you can indeed use anything here that Spicy supports for those as well (except container hooks).
So, e.g., on HTTP::Request::%done triggers an event whenever a HTTP::Request unit has been fully
parsed, and on HTTP::Request::uri leads to an event each time the uri field has been parsed. (In the
former example, you may skip the %done actually: on HTTP::Request implicitly adds it.)

EVENT_NAME The Zeek-side name of event you want to generate, preferably including a namespace (e.g.,
http::request).

ARG_I An argument to pass to the event, given as an arbitrary Spicy expression. The expression will be evaluated
within the context of the unit that the on ... triggers on, similar to code running inside the body of a cor-
responding unit hook. That means the expressions has access to self for accessing the unit instance that’s
currently being parsed.

120 Chapter 2. Documentation

Spicy, Release 1.4.0

The Spicy type of the expression determines the Zeek-side type of the corresponding event parameters. Most
Spicy types translate over pretty naturally, the following summarizes the translation:

Table 1: Type Conversion from Spicy to Zeek
Spicy Type Zeek Type Notes
addr addr
bool bool
enum { ... } enum { ... } [1]
int(8|16|32|64) int
interval interval
list<T> vector of T
map<V,K> table[V] of K
optional<T> T [2]
port port
real double
set<T> set[T]
string string
time time
tuple<T_1, ... ,T_N> record { T1, ..., T_N } [3]
uint(8|16|32|64) count
vector<T> vector of T

Note:

[1] A corresponding Zeek-side enum type is automatically created. See below for more.

[2] The optional value must have a value, otherwise a runtime exception will be thrown.

[3] Must be mapped to a Zeek-side record type with matching fields.

If a tuple element is mapped to a record field with a &default or &optional attribute, a couple special
cases are supported:

• If the expression evaluates to Null, the record field is left unset.

• If the element’s expression uses the .? operator and that fails to produce a value, the record field is
likewise left unset.

In addition to full Spicy expressions, there are three reserved IDs with specific meanings when used as argu-
ments:

$conn Refers to the connection that’s currently being processed by Zeek. On the Zeek-side this
will turn into a parameter of Zeek type connection. This ID can be used only with protocol
analyzers.

$file Refers to the file that’s currently being processed by Zeek. On the Zeek-side this will turn
into a parameter of Zeek type fa_file. This ID can be used only with file analyzers.

$packet Refers to the packet that’s currently being processed by Zeek. On the Zeek-side this will
turn into a parameter of Zeek type raw_pkt_hdr, with any fields filled in that have already
been parsed by Zeek’s built-in analyzers. This ID can be used only with packet analyzers. (Note
that instantiation of raw_pkt_hdr values can be relatively expensive on the Zeek side, so best
to limit usage of this ID to a small part of the overall traffic.)

$is_orig A boolean indicating if the data currently being processed is coming from the originator
(True) or responder (False) of the underlying connection. This turns into a corresponding

2.7. Zeek Integration 121

Spicy, Release 1.4.0

boolean value on the Zeek side. This ID can be used only with protocol analyzers.

Note: Some tips:

• If you want to force a specific type on the Zeek-side, you have a couple of options:

1. Spicy may provide a cast operator from the actual type into the desired type (e.g.,
cast<uint64>(..)).

2. Argument expressions have access to global functions defined in the Spicy source files, so you can
write a conversion function taking an argument with its original type and returning it with the desired
type.

• List comprehension can be convenient to fill Zeek vectors: [some_func(i) for i in self.
my_list].

if COND If given, events are only generated if the expression COND evaluates to true. Just like event arguments, the
expression is evaluated in the context of the current unit instance and has access to self.

Enum Types

The Zeek plugin automatically makes Spicy enum types available on the Zeek-side if you declare them public. For
example, assume the following Spicy declaration:

module Test;

public type MyEnum = enum {
A = 83,
B = 84,
C = 85

};

The plugin will then create the equivalent of the following Zeek type for use in your scripts:

module Test;

export {

type MyEnum: enum {
MyEnum_A = 83,
MyEnum_B = 84,
MyEnum_A = 85,
MyEnum_Undef = -1

};

}

(The odd naming is due to ID limitations on the Zeek side.)

You can also see the type in the output of zeek -NN:

[...]
_Zeek::Spicy - Support for Spicy parsers

[Type] Test::MyEnum
[...]

122 Chapter 2. Documentation

Spicy, Release 1.4.0

Importing Spicy Modules

Code in an *.evt file may need access to additional Spicy modules, such as when expressions for event parameters
call Spicy functions defined elsewhere. To make a Spicy module available, you can insert import statements into the
*.evt file that work just like in Spicy code:

import NAME Imports Spicy module NAME.

import NAME from X.Y.Z; Searches for the module NAME (i.e., for the filename NAME.spicy)
inside a sub-directory X/Y/Z along the search path, and then imports it.

Conditional Compilation

*.evt files offer the same basic form of conditional compilation through @if/@else/@endif blocks as Spicy
scripts. The Zeek plugin makes two additional identifiers available for testing to both *.evt and *.spicy code:

HAVE_ZEEK Always set to 1 by the plugin. This can be used for feature testing from Spicy code to check
if it’s being compiled for Zeek.

ZEEK_VERSION The numerical Zeek version that’s being compiled for (see the output of
spicy-config --zeek-version-number).

This is an example bracketing code by Zeek version in an EVT file:

@if ZEEK_VERSION < 30200
<EVT code for Zeek versions older than 3.2>

@else
<EVT code for Zeek version 3.2 or newer>

@endif

2.7.4 Compiling Analyzers

Once you have the *.spicy and *.evt source files for your new analyzer, you have two options to compile them,
either in advance, or just-in-time at startup.

Ahead Of Time Compilation

You can precompile analyzers into *.hlto object files containing their final executable code. To do that, pass the
relevant *.spicy and *.evt files to spicyz, then have Zeek load the output. To repeat the example from the
Getting Started guide:

spicyz -o my-http-analyzer.hlto my-http.spicy my-http.evt
zeek -Cr request-line.pcap my-http-analyzer.hlto my-http.zeek
Zeek saw from 127.0.0.1: GET /index.html 1.0

While this approach requires an additional step every time something changes, starting up Zeek now executes quickly.

Instead of providing the precompiled analyzer on the Zeek command line, you can also copy them into ${prefix}/
lib/spicy/Zeek_Spicy/modules. The Spicy plugin will automatically load any *.hlto object files it finds
there. In addition, the plugin also scans Zeek’s plugin directory for *.hlto files. Alternatively, you can override both
of those locations by setting the environment variable ZEEK_SPICY_MODULE_PATH to a set of colon-separated
directories to search instead. The plugin will then only look there. In all cases, the plugin searches any directories
recursively, so it will find *.hlto also if they are nested in subfolders.

Run spicyz -h to see some additional options it provides, which are similar to spicy-driver.

2.7. Zeek Integration 123

Spicy, Release 1.4.0

Just In Time Compilation

To compile analyzers on the fly, you can pass your *.spicy and *.evt files to Zeek just like any of its scripts,
either on the command-line or through @load statements. The Spicy plugin hooks into Zeek’s processing of input
files and diverts them the right way into its compilation pipeline.

This approach can be quite convenient, in particular during development of new analyzers as it makes it easy to
iterate—just restart Zeek to pick up any changes. The disadvantage is that compiling Spicy parsers takes a noticeable
amount of time, which you’ll incur every time Zeek starts up; and it makes setting compiler options more difficult (see
below). We generally recommend using ahead-of-time compilation when working with the Zeek plugin.

2.7.5 Controlling Zeek from Spicy

Spicy grammars can import a provided library module zeek to gain access to Zeek-specific functions that call back
into Zeek’s processing:

function zeek::confirm_protocol()

Triggers a DPD protocol confirmation for the current connection.

function zeek::reject_protocol(reason: string)

Triggers a DPD protocol violation for the current connection.

function zeek::is_orig() : bool

Returns true if we’re currently parsing the originator side of a connection.

function zeek::uid() : string

Returns the current connection’s UID.

function zeek::conn_id() : tuple<orig_h

Returns the current connection’s 4-tuple ID.

function zeek::flip_roles()

Instructs Zeek to flip the directionality of the current connection.

124 Chapter 2. Documentation

Spicy, Release 1.4.0

function zeek::number_packets() : uint64

Returns the number of packets seen so far on the current side of the current connection.

function zeek::protocol_begin(analyzer: optional<string> = Null)

Adds a Zeek-side child protocol analyzer to the current connection.

analyzer: type of analyzer to instantiate, specified through its Zeek-side name (similar to what Zeek’s signature action
enable takes); if not specified, Zeek will perform its usual dynamic protocol detection to figure out how to parse the
data (the latter will work only for TCP protocols, though.)

function zeek::protocol_data_in(is_orig: bool, data: bytes)

Forwards protocol data to all previously instantiated Zeek-side child protocol analyzers.

is_orig: true to feed the data to the child’s originator side, false for the responder data: chunk of data to forward to
child analyzer

Note that due to Zeek limitations, any data passed through this function will always be forwarded to all currently
active child analyzers.

function zeek::protocol_gap(is_orig: bool, offset: uint64, len: uint64)

Signals a gap in input data to all previously instantiated Zeek-side child protocol analyzers.

is_orig: true to signal gap to the child’s originator side, false for the responder offset: start offset of gap in input stream
len: size of gap

Note that due to Zeek limitations, any gaps signaled through this function will always be forwarded to all currently
active child analyzers.

function zeek::protocol_end()

Signals end-of-data to all previously instantiated Zeek-side child protocol analyzers and removes them.

function zeek::file_begin(mime_type: optional<string> = Null) : string

Signals the beginning of a file to Zeek’s file analysis, associating it with the current connection. Optionally, a mime
type can be provided. It will be passed on to Zeek’s file analysis framework. Returns the Zeek-side file ID of the new
file.

function zeek::fuid() : string

Returns the current file’s FUID.

2.7. Zeek Integration 125

Spicy, Release 1.4.0

function zeek::file_set_size(size: uint64, fid: optional<string> = Null)

Signals the expected size of a file to Zeek’s file analysis.

size: expected size of file fid: Zeek-side ID of the file to operate on; if not given, the file started by the most recent
file_begin() will be used

function zeek::file_data_in(data: bytes, fid: optional<string> = Null)

Passes file content on to Zeek’s file analysis.

data: chunk of raw data to pass into analysis fid: Zeek-side ID of the file to operate on; if not given, the file started by
the most recent file_begin() will be used

function zeek::file_data_in_at_offset(data: bytes, offset: uint64, fid:
optional<string> = Null)

Passes file content at a specific offset on to Zeek’s file analysis.

data: chunk of raw data to pass into analysis offset: position in file where data starts fid: Zeek-side ID of the file to
operate on; if not given, the file started by the most recent file_begin() will be used

function zeek::file_gap(offset: uint64, len: uint64, fid: optional<string>
= Null)

Signals a gap in a file to Zeek’s file analysis.

offset: position in file where gap starts len: size of gap fid: Zeek-side ID of the file to operate on; if not given, the file
started by the most recent file_begin() will be used

function zeek::file_end(fid: optional<string> = Null)

Signals the end of a file to Zeek’s file analysis.

fid: Zeek-side ID of the file to operate on; if not given, the file started by the most recent file_begin() will be used

function zeek::forward_packet(identifier: uint32)

Inside a packet analyzer, forwards what data remains after parsing the top-level unit on to another analyzer. The index
specifies the target, per the current dispatcher table.

function zeek::network_time() : time

Gets the network time from Zeek.

126 Chapter 2. Documentation

Spicy, Release 1.4.0

2.7.6 Dynamic Protocol Detection (DPD)

Spicy protocol analyzers support Zeek’s Dynamic Protocol Detection (DPD), i.e., analysis independent of any well-
known ports. To use that with your analyzer, add two pieces:

1. A Zeek signature to activate your analyzer based on payload patterns. Just like with any of Zeek’s standard
analyzers, a signature can activate a Spicy analyzer through the enable "<name>" keyword. The name of
the analyzer comes out of the EVT file: it is the ANALYZER_NAME with the double colons replaced with an
underscore (e.g., spicy::HTTP turns into enable "spicy_HTTP".

2. You should call zeek::confirm_protocol() (see Controlling Zeek from Spicy) from a hook inside your
grammar at a point when the parser can be reasonably certain that it is processing the expected protocol. Option-
ally, you may also call zeek::reject_protocol() when you’re sure the parser is not parsing the right
protocol (e.g., inside an %error hook). Doing so will let Zeek stop feeding it more data.

2.7.7 Configuration

Options

The Spicy plugin provides a set of script-level options to tune its behavior, similar to what the spicy-driver provides
as command-line arguments. These all live in the Spicy:: namespace:

Activate compile-time debugging output for given debug streams (comma-
→˓separated list).

const codegen_debug = "" &redef;

Enable debug mode for code generation.
const debug = F &redef;

If debug is true, add selected additional instrumentation (comma-separated
→˓list).

const debug_addl = "" &redef;

Save all generated code into files on disk.
const dump_code = F &redef;

Enable optimization for code generation.
const optimize = F &redef;

Report a break-down of compiler's execution time.
const report_times = F &redef;

Disable code validation.
const skip_validation = F &redef;

Show output of Spicy print statements.
const enable_print = F &redef;

abort() instead of throwing HILTI # exceptions.
const abort_on_exceptions = F &redef;

Include backtraces when reporting unhandled exceptions.
const show_backtraces = F &redef;

Maximum depth of recursive file analysis (Spicy analyzers only)
const max_file_depth: count = 5 &redef;

2.7. Zeek Integration 127

https://docs.zeek.org/en/current/frameworks/signatures.html

Spicy, Release 1.4.0

Note, however, that most of those options affect code generation. It’s usually easier to set them through spicyz when
precompiling an analyzer. If you are using Zeek itself to compile an analyzer just-in-time, keep in mind that any code
generation options need to be in effect at the time the Spicy plugin kicks of the compilation process. A redef from
another script should work fine, as scripts are fully processed before compilation starts. However, changing values
from the command-line (via Zeek’s var=value) won’t be processed in time due to intricacies of Zeek’s timing. To
make it easier to change an option from the command-line, the Spicy plugin also supports an environment variable
ZEEK_SPICY_PLUGIN_OPTIONS that accepts a subset of spicy-driver command-line options in the form of
a string. For example, to JIT a debug version of all analyzers, set ZEEK_SPICY_PLUGIN_OPTIONS=-d. The full
set of options is this:

Supported Zeek-side Spicy options:
-A When executing compiled code, abort() instead of throwing HILTI

→˓exceptions.
-B Include backtraces when reporting unhandled exceptions.
-C Dump all generated code to disk for debugging.
-d Include debug instrumentation into generated code.
-D <streams> Activate compile-time debugging output for given debug streams

→˓(comma-separated).
-O Build optimized release version of generated code.
-o <out.hlto> Save precompiled code into file and exit.
-R Report a break-down of compiler's execution time.
-V Don't validate ASTs (for debugging only).
-X <addl> Implies -d and adds selected additional instrumentation (comma-

→˓separated).

To get that usage message, set ZEEK_SPICY_PLUGIN_OPTIONS=-h when running Zeek.

Functions

The Spicy plugin also adds the following new built-in functions to Zeek, which likewise live in the Spicy:: names-
pace:

Enable a specific Spicy protocol analyzer if not already active. If this
analyzer replaces an standard analyzer, that one will automatically be
disabled.
##
tag: analyzer to toggle
##
Returns: true if the operation succeeded
global enable_protocol_analyzer: function(tag: Analyzer::Tag) : bool;

Disable a specific Spicy protocol analyzer if not already inactive. If
this analyzer replaces an standard analyzer, that one will automatically
be re-enabled.
##
tag: analyzer to toggle
##
Returns: true if the operation succeeded
global disable_protocol_analyzer: function(tag: Analyzer::Tag) : bool;

The following functions are only available with Zeek versions > 4.0.

@if (Version::number >= 40100)
Enable a specific Spicy file analyzer if not already active. If this
analyzer replaces an standard analyzer, that one will automatically be

(continues on next page)

128 Chapter 2. Documentation

Spicy, Release 1.4.0

(continued from previous page)

disabled.
##
tag: analyzer to toggle
##
Returns: true if the operation succeeded
global enable_file_analyzer: function(tag: Files::Tag) : bool;

Disable a specific Spicy file analyzer if not already inactive. If
this analyzer replaces an standard analyzer, that one will automatically
be re-enabled.
##
tag: analyzer to toggle
##
Returns: true if the operation succeeded
global disable_file_analyzer: function(tag: Files::Tag) : bool;

@endif

2.7.8 Debugging

If Zeek doesn’t seem to be doing the right thing with your Spicy analyzer, there are several ways to debug what’s
going on. To facilitate that, compile your analyzer with spicyz -d and, if possible, use a debug version of Zeek
(i.e., build Zeek with ./configure --enable-debug).

If your analyzer doesn’t seem to be active at all, first make sure Zeek actually knows about it: It should show up in the
output of zeek -NN _Zeek::Spicy. If it doesn’t, you might not being loading the right *.spicy or *.evt
files. Also check your *.evt if it defines your analyzer correctly.

If Zeek knows about your analyzer and just doesn’t seem to activate it, double-check that ports or MIME types are
correct in the *.evt file. If you’re using a signature instead, try a port/MIME type first, just to make sure it’s not a
matter of signature mismatches.

If there’s nothing obviously wrong with your source files, you can trace what the plugin is compiling by running
spicyz with -D zeek. For example, reusing the HTTP example from the Getting Started guide:

spicyz -D zeek my-http.spicy my-http.evt -o my-http.hlt
[debug/zeek] Loading Spicy file "/Users/robin/work/spicy/main/tests/spicy/doc/my-http.
→˓spicy"
[debug/zeek] Loading EVT file "/Users/robin/work/spicy/main/doc/examples/my-http.evt"
[debug/zeek] Loading events from /Users/robin/work/spicy/main/doc/examples/my-http.evt
[debug/zeek] Got protocol analyzer definition for spicy_MyHTTP
[debug/zeek] Got event definition for MyHTTP::request_line
[debug/zeek] Running Spicy driver
[debug/zeek] Got unit type 'MyHTTP::Version'
[debug/zeek] Got unit type 'MyHTTP::RequestLine'
[debug/zeek] Adding protocol analyzer 'spicy_MyHTTP'
[debug/zeek] Adding Spicy hook 'MyHTTP::RequestLine::0x25_done' for event
→˓MyHTTP::request_line
[debug/zeek] Done with Spicy driver

You can see the main pieces in there: The files being loaded, unit types provided by them, analyzers and event being
created.

If that all looks as expected, it’s time to turn to the Zeek side and see what it’s doing at runtime. You’ll need a debug
version of Zeek for that, as well as a small trace with traffic that you expect your analyzer to process. Run Zeek with
-B dpd (or -B file_analysis if you’re debugging a file analyzer) on your trace to record the analyzer activity
into debug.log. For example, with the same HTTP example, we get:

2.7. Zeek Integration 129

Spicy, Release 1.4.0

1 # zeek -B dpd -Cr request-line.pcap my-http.hlto
2 # cat debug.log
3 [dpd] Registering analyzer SPICY_MYHTTP for port 12345/1
4 [...[
5 [dpd] Available analyzers after zeek_init():
6 [...]
7 [dpd] spicy_MyHTTP (enabled)
8 [...]
9 [dpd] Analyzers by port:

10 [dpd] 12345/tcp: SPICY_MYHTTP
11 [...]
12 [dpd] TCP[5] added child SPICY_MYHTTP[7]
13 [dpd] 127.0.0.1:59619 > 127.0.0.1:12345 activated SPICY_MYHTTP analyzer due to port

→˓12345
14 [...]
15 [dpd] SPICY_MYHTTP[7] DeliverStream(25, T) [GET /index.html HTTP/1.0\x0a]
16 [dpd] SPICY_MYHTTP[7] EndOfData(T)
17 [dpd] SPICY_MYHTTP[7] EndOfData(F)

The first few lines show that Zeek’s analyzer system registers the analyzer as expected. The subsequent lines show
that the analyzer gets activated for processing the connection in the trace, and that it then receives the data that we
know indeed constitutes its payload, before it eventually gets shutdown.

To see this from the plugin’s side, set the zeek debug stream through the HILTI_DEBUG environment variable:

HILTI_DEBUG=zeek zeek -Cr request-line.pcap my-http.hlto
[zeek] Have Spicy protocol analyzer spicy_MyHTTP
[zeek] Registering Protocol::TCP protocol analyzer spicy_MyHTTP with Zeek
[zeek] Scheduling analyzer for port 12345/tcp
[zeek] Done with post-script initialization
[zeek] [SPICY_MYHTTP/7/orig] initial chunk: |GET /index.html HTTP/1.0\\x0a|
→˓(eod=false)
[zeek] [SPICY_MYHTTP/7/orig] -> event MyHTTP::request_line($conn, GET, /index.html, 1.
→˓0)
[zeek] [SPICY_MYHTTP/7/orig] done with parsing
[zeek] [SPICY_MYHTTP/7/orig] parsing finished, skipping further originator payload
[zeek] [SPICY_MYHTTP/7/resp] no unit specified for parsing
[zeek] [SPICY_MYHTTP/7/orig] skipping end-of-data delivery
[zeek] [SPICY_MYHTTP/7/resp] no unit specified for parsing
[zeek] [SPICY_MYHTTP/7/orig] skipping end-of-data delivery
[zeek] [SPICY_MYHTTP/7/resp] no unit specified for parsing

After the initial initialization, you see the data arriving and the event being generated for Zeek. The plugin also reports
that we didn’t define a unit for the responder side—which we know in this case, but if that appears unexpectedly you
probably found a problem.

So we know now that our analyzer is receiving the anticipated data to parse. At this point, we can switch to debugging
the Spicy side through the usual mechanisms. In particular, setting HILTI_DEBUG=spicy tends to be helpful:

HILTI_DEBUG=spicy zeek -Cr request-line.pcap my-http.hlto
[spicy] MyHTTP::RequestLine
[spicy] method = GET
[spicy] anon_2 =
[spicy] uri = /index.html
[spicy] anon_3 =
[spicy] MyHTTP::Version
[spicy] anon = HTTP/
[spicy] number = 1.0

(continues on next page)

130 Chapter 2. Documentation

Spicy, Release 1.4.0

(continued from previous page)

[spicy] version = [$number=b"1.0"]
[spicy] anon_4 = \n

If everything looks right with the parsing, and the right events are generated too, then the final part is to check out the
events that arrive on the Zeek side. To get Zeek to see an event that the plugin raises, you need to have at least one
handler implemented for it in one of your Zeek scripts. You can then load Zeek’s misc/dump-events to see them
as they are being received, including their full Zeek-side values:

zeek -Cr request-line.pcap my-http.hlto misc/dump-events
[...]
1580991211.780489 MyHTTP::request_line

[0] c: connection = [id=[orig_h=127.0.0.1, orig_p=59619/tcp, ...] .
→˓..]

[1] method: string = GET
[2] uri: string = /index.html
[3] version: string = 1.0

[...]

2.8 Custom Host Applications

Spicy provides a C++ API for integrating its parsers into custom host applications. There are two different approaches
to doing this:

1. If you want to integrate just one specific kind of parser, Spicy can generate C++ prototypes for it that facilitate
feeding data and accessing parsing results.

2. If you want to write a generic host application that can support arbitrary parsers, Spicy provides a dynamic
runtime introspection API for dynamically instantiating parsers and accessing results.

We discuss both approaches in the following.

Note: Internally, Spicy is a layer on top of an intermediary framework called HILTI. It is the HILTI runtime library that
implements most of the functionality we’ll look at in this section, so you’ll see quite a bit of HILTI-side functionality.
Spicy comes with a small additional runtime library of its own that adds anythings that’s specific to the parsers it
generates.

Note: The API for host applications is still in flux, and some parts aren’t the prettiest yet. Specifics of this may
change in future versions of HILTI/Spicy.

2.8.1 Integrating a Specific Parser

We’ll use our simple HTTP example from the Getting Started section as a running example for a parser we want to
leverage from a C++ application.

Listing 5: my-http.spicy

module MyHTTP;

const Token = /[^ \t\r\n]+/;
(continues on next page)

2.8. Custom Host Applications 131

Spicy, Release 1.4.0

(continued from previous page)

const WhiteSpace = /[\t]+/;
const NewLine = /\r?\n/;

type Version = unit {
: /HTTP\//;
number: /[0-9]+\.[0-9]+/;

};

public type RequestLine = unit {
method: Token;
: WhiteSpace;
uri: Token;
: WhiteSpace;
version: Version;
: NewLine;

on %done {
print self.method, self.uri, self.version.number;
}

};

First, we’ll use spicyc to generate a C++ parser from the Spicy source code:

spicyc -c -g my-http.spicy -o my-http.cc

Option -c (aka --output-c++) tells spicyc that we want it to generate C++ code (rather than compiling every-
thing down into executable code).

Option -g (aka --disable-optimizations) tells spicyc to not perform global optimizations. Optimizations
are performed on all modules passed to a invocation of spicyc and can remove e.g., unused code. Since we generate
output files with multiple invocations, optimizations could lead to incomplete code.

We also need spicyc to get generate some additional additional “linker” code implementing internal plumbing
necessary for cross-module functionality. That’s what -l (aka --output-linker) does:

spicyc -l -g my-http.cc -o my-http-linker.cc

We’ll compile this linker code along with the my-http.cc.

Next, spicyc can also generate C++ prototypes for us that declare (1) a set of parsing functions for feeding in data,
and (2) a struct type providing access to the parsed fields:

spicyc -P -g my-http.spicy -o my-http.h

The output of -P (aka --output-prototypes) is a bit convoluted because it (necessarily) also contains a bunch
of Spicy internals. Stripped down to the interesting parts, it looks like this for our example:

[...]

namespace __hlt::MyHTTP {
struct RequestLine : hilti::rt::trait::isStruct, hilti::rt::Controllable

→˓<RequestLine> {
std::optional<hilti::rt::Bytes> method{};
std::optional<hilti::rt::Bytes> uri{};
std::optional<hilti::rt::ValueReference<Version>> version{};
[...]

};

(continues on next page)

132 Chapter 2. Documentation

Spicy, Release 1.4.0

(continued from previous page)

struct Version : hilti::rt::trait::isStruct, hilti::rt::Controllable<Version> {
std::optional<hilti::rt::Bytes> number{};
[...]

};

[...]
}

namespace hlt::MyHTTP::RequestLine {
extern auto parse1(hilti::rt::ValueReference<hilti::rt::Stream>& data, const

→˓std::optional<hilti::rt::stream::View>& cur) -> hilti::rt::Resumable;
extern auto parse2(hilti::rt::ValueReference<__hlt::MyHTTP::RequestLine>& unit,

→˓hilti::rt::ValueReference<hilti::rt::Stream>& data, const std::optional
→˓<hilti::rt::stream::View>& cur) -> hilti::rt::Resumable;

extern auto parse3(spicy::rt::ParsedUnit& gunit, hilti::rt::ValueReference
→˓<hilti::rt::Stream>& data, const std::optional<hilti::rt::stream::View>& cur) ->
→˓hilti::rt::Resumable;
}

[...]

Todo: The struct declarations should move into the public namespace.

You can see the struct definitions corresponding to the two unit types, as well as a set of parsing functions with
three different signatures:

parse1 The simplest form of parsing function receives a stream of input data, along with an optional view into
the stream to limit the region to parse if desired. parse` will internally instantiate an instance of the unit’s
struct, and then feed the unit’s parser with the data stream. However, it won’t provide access to what’s being
parsed as it doesn’t pass back the struct.

parse2 The second form takes a pre-instantiated instance of the unit’s struct type, which parsing will fill out.
Once parsing finishes, results can be accessed by inspecting the struct fields.

parse3 The third form takes a pre-instantiated instance of a generic, type-erased unit type that the parsing will fill
out. Accessing the data requires use of HILTI’s reflection API, which we will discuss in Supporting Arbitrary
Parsers.

Let’s start by using parse1():

Listing 6: my-http-host.cc

#include <iostream>

#include <hilti/rt/libhilti.h>

#include <spicy/rt/libspicy.h>

#include "my-http.h"

int main(int argc, char** argv) {
assert(argc == 2);

// Initialize runtime library.
hilti::rt::init();

(continues on next page)

2.8. Custom Host Applications 133

Spicy, Release 1.4.0

(continued from previous page)

// Create stream with $1 as data.
auto stream = hilti::rt::reference::make_value<hilti::rt::Stream>(argv[1]);
stream->freeze();

// Feed data.
hlt::MyHTTP::RequestLine::parse1(stream, {}, {});

// Wrap up runtime library.
hilti::rt::done();

return 0;
}

This code first instantiates a stream from data giving on the command line. It freezes the stream to indicate that no
further data will arrive later. Then it sends the stream into the parse1() function for processing.

We can now use the standard C++ compiler to build all this into an executable, leveraging spicy-config to add
the necessary flags for finding includes and libraries:

clang++ -o my-http my-http-host.cc my-http.cc my-http-linker.cc $(spicy-config --
→˓cxxflags --ldflags)
./my-http $'GET index.html HTTP/1.0\n'
GET, /index.html, 1.0

The output comes from the execution of the print statement inside the Spicy grammar, demonstrating that the parsing
proceeded as expected.

When using parse1() we don’t get access to the parsed information. If we want that, we can use parse2()
instead and provide it with a struct to fill in:

Listing 7: my-http-host.cc

#include <iostream>

#include <hilti/rt/libhilti.h>
#include <spicy/rt/libspicy.h>

#include "my-http.h"

int main(int argc, char** argv) {
assert(argc == 2);

// Initialize runtime libraries.
hilti::rt::init();
spicy::rt::init();

// Create stream with $1 as data.
auto stream = hilti::rt::reference::make_value<hilti::rt::Stream>(argv[1]);
stream->freeze();

// Instantiate unit.
auto request = hilti::rt::reference::make_value<__hlt::MyHTTP::RequestLine>();

// Feed data.
hlt::MyHTTP::RequestLine::parse2(request, stream, {}, {});

(continues on next page)

134 Chapter 2. Documentation

Spicy, Release 1.4.0

(continued from previous page)

// Access fields.
std::cout << "method : " << *request->method << std::endl;
std::cout << "uri : " << *request->uri << std::endl;
std::cout << "version: " << *(*request->version)->number << std::endl;

// Wrap up runtime libraries.
spicy::rt::done();
hilti::rt::done();

return 0;
}

clang++ -o my-http my-http-host.cc my-http-host.cc $(spicy-config --cxxflags --
→˓ldflags)
./my-http $'GET index.html HTTP/1.0\n'
GET, /index.html, 1.0
method : GET
uri : /index.html
version: 1.0

Another approach to retrieving field values goes through Spicy hooks calling back into the host application. That’s
how the Zeek plugin operates. Let’s say we want to execute a custom C++ function every time a RequestList has
been parsed. By adding the following code to my-http.spicy, we (1) declare that function on the Spicy-side, and
(2) implement a Spicy hook that calls it:

Listing 8: my-http.spicy

public function got_request_line(method: bytes, uri: bytes, version_number: bytes) :
→˓void &cxxname="got_request_line";

on RequestLine::%done {
got_request_line(self.method, self.uri, self.version.number);

}

The &cxxname attribute for got_request_line indicates to Spicy that this is a function implemented externally
inside custom C++ code, accessible through the given name. Now we need to implement that function:

Listing 9: my-http-callback.cc

#include <iostream>

#include <hilti/rt/libhilti.h>

#include <spicy/rt/libspicy.h>

void got_request_line(const hilti::rt::Bytes& method, const hilti::rt::Bytes& uri,
→˓const hilti::rt::Bytes& version_number) {

std::cout << "In C++ land: " << method << ", " << uri << ", " << version_number <
→˓< std::endl;
}

Finally, we compile it altogether:

spicyc -c -g my-http.spicy -o my-http.cc
spicyc -l -g my-http.cc -o my-http-linker.cc
spicyc -P -g my-http.spicy -o my-http.h

(continues on next page)

2.8. Custom Host Applications 135

Spicy, Release 1.4.0

(continued from previous page)

clang++ -o my-http my-http.cc my-http-linker.cc my-http-callback.cc my-http-host.cc
→˓$(spicy-config --cxxflags --ldflags)
./my-http $'GET index.html HTTP/1.0\n'
In C++ land: GET, index.html, 1.0
GET, index.html, 1.0

Note that the C++ function signature needs to match what Spicy expects, based on the Spicy-side prototype. If you are
unsure how Spicy arguments translate into C++ arguments, look at the C++ prototype that’s included for the callback
function in the output of -P.

A couple more notes on the compilation process for integrating Spicy-generated code into custom host applications:

• Above we used spicyc -l to link our Spicy code from just a single Spicy source file. If you have more than
one source file, you need to link them altogether in a single step. For example, if we had A.spicy, B.spicy
and C.spicy, we’d do:

spicyc -c -g A.spicy -o A.cc
spicyc -c -g B.spicy -o B.cc
spicyc -c -g C.spicy -o C.cc
spicyc -l -g A.cc B.cc C.cc -o linker.cc
clang++ A.cc B.cc C.cc linker.cc -o a.out ...

• If your Spicy code is importing any library modules (e.g., the standard filter module), you’ll need to compile
those as well in the same fashion.

2.8.2 Supporting Arbitrary Parsers

This approach is more complex, and we’ll just briefly describe the main pieces here. All of the tools coming with Spicy
support arbitrary parsers and can serve as further examples (e.g., spicy-driver, spicy-dump, the Zeek plugin). Indeed,
they all build on the same C++ library class spicy::rt::Driver that provides a higher-level API to working with
Spicy’s parsers in a generic fashion. We’ll do the same in the following.

Retrieving Available Parsers

The first challenge for a generic host application is that it cannot know what parsers are even available. Spicy’s runtime
library provides an API to get a list of all parsers that are compiled into the current process. Continuing to use the
my-http.spicy example, this code prints out our one available parser:

Listing 10: my-http-host.cc

#include <iostream>

#include <hilti/rt/libhilti.h>

int main(int argc, char** argv) {
assert(argc == 2);

// Initialize runtime libraries.
hilti::rt::init();
spicy::rt::init();

// Instantiate driver providing higher level parsing API.
spicy::rt::Driver driver;

(continues on next page)

136 Chapter 2. Documentation

Spicy, Release 1.4.0

(continued from previous page)

// Print out available parsers.
print(unit->value());

// Wrap up runtime libraries.
spicy::rt::done();
hilti::rt::done();

return 0;
}

clang++ -o my-http my-http-host.cc my-http.cc my-http-linker.cc $(spicy-config --
→˓cxxflags --ldflags)
./my-http
Available parsers:

MyHTTP::RequestLine

Using the name of the parser (MyHTTP::RequestLine) we can instantiate it from C++, and then feed it data:

// Retrieve meta object describing parser.
auto parser = driver.lookupParser("MyHTTP::RequestLine");
assert(parser);

// Fill string stream with $1 as data to parse.
std::stringstream data(argv[1]);

// Feed data.
auto unit = driver.processInput(**parser, data);

clang++ -o my-http my-http-host.cc my-http.cc my-http-linker.cc $(spicy-config --
→˓cxxflags --ldflags)
./my-http $'GET index.html HTTP/1.0\n'
GET, /index.html, 1.0

That’s the output of the print statement once more.

unit is of type spicy::rt::ParsedUnit, which is a type-erased class holding, in this case, an instance of
_hlt::MyHTTP::RequestLine. Internally, that instance went through the parse3() function that we have
encountered in the previous section. To access the parsed fields, there’s a visitor API to iterate generically over HILTI
types like this unit:

void print(const hilti::rt::type_info::Value& v) {
const auto& type = v.type();
switch (type.tag) {

case hilti::rt::TypeInfo::Bytes: std::cout << type.bytes->get(v); break;
case hilti::rt::TypeInfo::ValueReference: print(type.value_reference->

→˓value(v)); break;
case hilti::rt::TypeInfo::Struct:

for (const auto& [f, y] : type.struct_->iterate(v)) {
std::cout << f.name << ": ";
print(y);
std::cout << std::endl;

}
break;

default: assert(false);
}

(continues on next page)

2.8. Custom Host Applications 137

Spicy, Release 1.4.0

(continued from previous page)

}

Adding print(unit->value() after the call to processInput() then gives us this output:

clang++ -o my-http my-http-host.cc my-http.cc my-http-linker.cc $(spicy-config --
→˓cxxflags --ldflags)
./my-http $'GET index.html HTTP/1.0\n'
GET, /index.html, 1.0
method: GET
uri: /index.html
version: number: 1.0

Our visitor code implements just what we need for our example. The source code of spicy-dump shows a full
implementation covering all available types.

So far we have compiled the Spicy parsers statically into the generated executable. The runtime API supports loading
them dynamically as well from pre-compiled HLTO files through the class hilti::rt::Library. Here’s the full
example leveraging that, taking the file to load from the command line:

Listing 11: my-driver

int main(int argc, char** argv) {
// Usage now: "my-driver <hlto> <name-of-parser> <data>"
assert(argc == 4);

// Load pre-compiled parser. This must come before initializing the
// runtime libraries.
auto library = hilti::rt::Library(argv[1]);
auto rc = library.open();
assert(rc);

// Initialize runtime libraries.
hilti::rt::init();
spicy::rt::init();

// Instantiate driver providing higher level parsing API.
spicy::rt::Driver driver;

// Print out available parsers.
driver.listParsers(std::cout);

// Retrieve meta object describing parser.
auto parser = driver.lookupParser(argv[2]);
assert(parser);

// Fill string stream with $1 as data to parse.
std::stringstream data(argv[3]);

// Feed data.
auto unit = driver.processInput(**parser, data);
assert(unit);

// Print out conntent of parsed unit.
print(unit->value());

// Wrap up runtime libraries.
spicy::rt::done();

(continues on next page)

138 Chapter 2. Documentation

Spicy, Release 1.4.0

(continued from previous page)

hilti::rt::done();

return 0;
}

$(spicy-config --cxx) -o my-driver my-driver.cc $(spicy-config --cxxflags --ldflags
→˓--dynamic-loading)
spicyc -j my-http.spicy >my-http.hlto
./my-driver my-http.hlto "$(cat data)"
Available parsers:

MyHTTP::RequestLine

GET, /index.html, 1.0
method: GET
uri: /index.html
version: number: 1.0

Note: Note the addition of --dynamic-loading to the hilti-config command line. That’s needed when
the resulting binary will dynamically load precompiled Spicy parsers because linker flags need to be slightly adjusted
in that case.

2.8.3 API Documentation

We won’t go further into details of the HILTI/Spicy runtime API here. Please see C++ API documentation for more
on that, the namespaces hilti::rt and spicy::rt cover what’s available to host applications.

Our examples always passed the full input at once. You don’t need to do that, Spicy’s parsers can process input incre-
mentally as it comes in, and return back to the caller to retrieve more. See the source of spicy::Driver::processInput()
for an example of how to implement that.

2.9 Release Notes

This following summarizes the most important changes in recent Spicy releases. For an exhaustive list of all changes,
see the #CHANGES file coming with the distribution.

2.9.1 Version 1.4

New Functionality

• Add support for recovery from parse errors or incomplete input

This release adds support for recovering from parse errors or incomplete input (e.g., gaps or partial connections).
Grammars can denote unit synchronization points with a &synchronize attribute. If an error is encountered
while extracting a previous fields, parsing will attempt to resynchronize the input at that point. The synchroniza-
tion result needs to be checked and confirmed or rejected explicitly; a number of hooks are provided for that.
See the docs for details.

• Remove restriction that units used as sinks need to be public

2.9. Release Notes 139

https://github.com/zeek/spicy/blob/main/spicy/runtime/src/driver.cc
https://github.com/zeek/spicy/blob/main/CHANGES

Spicy, Release 1.4.0

• Uses ccache for C++ compilation during JIT if Spicy itself was configured to use ccache

Spicy spends a considerable amount of JIT time compiling generated C++ code. This work can be cached
if neither inputs nor any of the used flags have changed so that subsequent JIT runs can complete much
faster.

We now automatically cache many C++ compilation artifacts with ccache if Spicy itself was configured
with e.g., --with-hilti-compiler-launcher=ccache. This behavior can be controlled or
disabled via the HILTI_CXX_COMPILER_LAUNCHER environment variable.

• GH-842: Add Spicy support for struct initialization.

• GH-1036: Support unit initialization through a struct constructor expression.

Changed Functionality

• GH-1074: %random-access is now derived automatically from uses and declaring it explicitly has been
deprecated.

• GH-1072: Disallow enum declarations with non-unique values.

It is unclear what code should be generated when requested to convert an integer value to the following enum:

type E = enum {
A = 1,
B = 2,
C = 1,

};

For 1 we could produce either E::A or E::C here.

Instead of allowing this ambiguity we now disallow enums with non-unique values.

Bug fixes

• Prevent exception if cache directory is not readable.

• Propagate failure from cmake up to ./configure.

• GH-1030: Make sure types required for globals are declared before being used.

• Fix potentially use-after-free in stringification of stream::View.

• GH-1087: Make offset return correct value even before parsing of field.

Documentation

2.9.2 Version 1.3

New Functionality

• Add optimizer removing unused %random-access or %filter functionality

If a unit has e.g., a %random-access attribute Spicy emits additional code to track and update offsets. If the
%random-access functionality is not used this leads to unneeded code being emitted which causes unneeded
overhead, both during JIT and during execution.

We now emit such feature-dependent code under a feature flag (effectively a global boolean constant) which is
by default on. Additionally, we added an optimizer pass which detects whether a feature is used and can disable

140 Chapter 2. Documentation

Spicy, Release 1.4.0

unused feature functionality (switching the feature flag to off), and can then remove unreachable code behind
such disabled feature flags by performing basic constant folding.

• Add optimizer pass removing unused sink functionality

By default any unit declared public can be used as a sink. To support sink behavior additional code is emitted
and invoked at runtime, regardless of whether the unit is used as a sink or not.

We now detect unused sink functionality and avoid emitting it.

• GH-934: Allow $$ in place of self in unit convert attributes.

Changed Functionality

• GH-941: Allow use of units with all defaulted parameters as entry points.

• We added precompilation support for libspicy.h.

• Drop support for end-of-life Fedora 32, and add support for Fedora 34.

Bug fixes

• Correctly handle lookups for NULL library symbols.

• Use safe integers for size functions in the runtime library.

• Make it possible to build on ARM64.

• Fix building with gcc-11.

Documentation

2.9.3 Version 1.2

New Functionality

• GH-913: Add support for switch-level &parse-at and &parse-from attributes inside a unit.

• Add optimizer pass removing unimplemented functions and methods.

This introduces a global pass triggered after all individual input ASTs have been finalized, but before we generate
any C++ code. We then strip out any unimplemented member functions (typically Spicy hooks), both their
definitions as well as their uses.

In order to correctly handle previously generated C++ files which might have been generated with different
optimization settings, we disallow optimizations if we detect that a C++ input file was generated by us.

2.9. Release Notes 141

Spicy, Release 1.4.0

Changed Functionality

• Add validation of unit switch attributes. We previously silently ignored unsupported attributes; now errors are
raised.

• Remove configure option --build-zeek-plugin. Spicy no longer supports building the Zeek plu-
gin/analyzers in-tree. This used to be available primarily for development purposes, but became challenging
to maintain.

• Add environment variable HILTI_CXX_INCLUDE_DIRS to specify additional C++ include directories when
compiling generated code.

• GH-940: Add runtime check for parsing progress during loops.

Bug fixes

• Fix computation of unset locations.

• Fix accidental truncating conversion in integer code.

Documentation

2.9.4 Version 1.1

New Functionality

• GH-844: Add support for &size attribute to unit switch statement.

• GH-26: Add %skip, %skip-pre and %skip-post properties for skipping input matching a regular expres-
sion before any further input processing takes place.

• Extend library functionality provided by the spicy module:

– crc32_init()/crc32_add() compute CRC32 checksums.

– mktime() creates a time value from individual components.

– zlib_init() initializes a ZlibStream with a given window bits argument.

– Zlib now accepts a window bits parameter.

• Add a new find() method to units for that searches for a bytes sequence inside their input data, forward or
backward from a given starting position.

• Add support for &chunked when parsing bytes data with &until or &until_including.

• Add encode() method to string for conversion to bytes.

• Extend parsing of void fields:

– Add support for &eod to skip all data until the end of the current input is encountered.

– Add support for &until to skip all data until a deliminator is encountered. The deliminator will be
extracted from the stream before continuing.

• Port Spicy to Apple silicon.

• Add Dockerfile for OpenSUSE 15.2.

142 Chapter 2. Documentation

Spicy, Release 1.4.0

Changed Functionality

• Reject void fields with names.

• Lower minimum required Python version to 3.2.

• GH-882: Lower minimum required Bison version to 3.0.

Bug fixes

• GH-872: Fix missing normalization of enum label IDs.

• GH-878: Fix casting integers to enums.

• GH-889: Fix hook handling for anonymous void fields.

• GH-901: Fix type resolution bug in &convert.

• Fix handling of &size attribute for anonymous void fields.

• Fix missing update to input position before running %done hook.

• Add validation rejecting $$ in hooks not supporting it.

• Make sure container sizes are runtime integers.

• Fix missing operator<< for enums when generating debug code.

• GH-917: Default-initialize forwarding fields without type arguments.

Documentation

• GH-37: Add documentation on how to skip data with void fields.

2.9.5 Migrating from the old prototype

Below we summarize language changes in Spicy compared to the original research prototype. Note that some of the
prototype’s more advanced functionality has not yet been ported to the new code base; see the corresponding list on
GitHub for what’s still missing.

Changes:

• Renamed export linkage to public.

• Renamed %byteorder property to %byte-order.

• Renamed &byteorder attribute to &byte-order.

• Renamed &bitorder attribute to &bit-order.

• All unit-level properties now need to conclude with a semicolon (e.g., %filter;).

• Renamed &length attribute to &size.

• Renamed &until_including attribute to &until-including.

• Replaced &parse with separate &parse-from (taking a “bytes” instance) and &parse-at (taking a stream
iterator) attributes.

• Attributes no longer accept their arguments in parentheses, it now must <attr>=expr. (Before, both versions
were accepted.)

2.9. Release Notes 143

https://www.icir.org/hilti
https://github.com/zeek/spicy/issues?q=is%3Aissue+is%3Aopen+label%3A%22Port+V1%22

Spicy, Release 1.4.0

• uint<N> and int<N> are no longer accepted, use uintN/intN instead (which worked before already as
well)

• list<T> is no longer supported, use vector<T> instead.

• New syntax for parsing sequences: Use x: int8[5] instead of x: vector<int8> &length=5. For
lists of unknown size, use x: int8[]. When parsing sequences sub-units, use: x: Item[]; or, if further
arguments/attributes are required, x: (Item(1,2,3))[]. (The latter syntax isn’t great, but the old syntax
was ambiguous.)

• New syntax for functions: function f(<params>) [: <result>] instead of <result>
f(<params>)

• Renamed runtime support module from Spicy to spicy (so use import spicy)

• In units, variables are now initialized to default values by default. Previously, that was (inconsistently) happening
only for variables of type sink. To revert to the old behaviour, add “&optional” to the variable.

• Renamed type double to real.

• Generally, types don’t coerce implicitly to bool anymore except in specific language contexts, such as in state-
ments with boolean conditions.

• Filters can now be implemented in Spicy itself. The pre-built filter::Base64Decode and
filter::Zlib provide the base64 and zlib functionality of the previously built-in filters.

• {unit,sink}::add_filter are renamed to {unit,sink}::connect_filter.

• Enums don’t coerce to bool anymore, need to manually compare to Undef.

• Coercion to bool now happens only in certain contexts, like if-conditions (similar to C++).

• The sink method sequence has been renamed to sequence_number.

• The effect of the sink method set_initial_sequence_number no longer persists when reconnecting a
different unit to a sink.

• &transient is no longer a supported unit field attribute. The same effect can now be achieved through an
anonymous field (also see next point).

• $$ can now be generally used in hooks to refer to the just parsed value. That’s particularly useful inside hooks
for anonymous fields, including fields that previously were &transient (see above). Previously, “$$” worked
only for container elements in foreach hooks (which still operates the same way).

• Fields of type real are parsed with &type attribute (e.g., &type=Spicy::RealType::IEEE754_Double).
They used to &precision attributes with a different enum type.

• Assigning to unit fields and variables no longer triggers any hooks. That also means that hooks are generally no
longer supported for variables (This is tricky to implement, not clear it’s worth the effort.)

• When importing modules, module names are now case-sensitive.

• When parsing vectors/lists of integers of a given length, use &count instead of &length.

• Zeek plugin:

– Bro::dpd_confirm() has been renamed to zeek::confirm_protocol(). There’s also a cor-
responding zeek::reject_protocol().

– To auto-export enums to Zeek, they need to be declared public.

144 Chapter 2. Documentation

Spicy, Release 1.4.0

2.10 Developer’s Manual

2.10.1 Architecture

Components & Data Flow

Runtime Libraries

HILTI and Spicy each come with their own runtime libraries providing functionality that the execution of compiled
code requires. The bulk of the functionality here resides with the HILTI side, with the Spicy runtime adding pieces
that are specific to its use case (i.e., parsing).

Conceptually, there are a few different categories of functionality going into these runtime libraries, per the following
summary.

Categories of Functionality

Category 1 Public library functionality that Spicy programs can import (e.g., functions like
spicy::current_time() inside the spicy module; filters like filter::Zlib inside the
filter module). This functionality is declared in spicy/lib/*.spicy and implemented in C++
in libspicy-rt.a.

Category 2 Public library functionality that HILTI programs can import (e.g., the hilti::print() function
inside the hilti module). This functionality is declared in hilti/lib/hilti.hlt and implemented in
C++ in libhilti-rt.a.

Note: “Public functionality” here means being available to any HILTI program. This functionality is not
exposed inside Spicy, and hence usually not visible to users unless they happen to start writing HILTI programs
(e.g., when adding test cases to the code base).

Category 3 Public library functionality for C++ host applications to #include for interacting with the generated
C++ code (e.g., to retrieve the list of available Spicy parsers, start parsing, and gain access to parsed values). This
is declared inside the hilti:rt C++ namespace by hilti/include/rt/libhilti.h for HILTI-side
functionality; and inside the spicy::rt namespace by spicy/include/rt/libspicy.h for purely
Spicy-side functionality. This functionality is implemented in libhilti-rt.a and libspicy-rt.a, re-
spectively.

Note: Everything in the sub-namespaces {hilti,spicy}::rt::detail remains private and is covered
by categories 4 and 5.

Category 4 Private Spicy-side library functionality that the HILTI code coming out of Spicy compilation can import
(e.g., functions to access parsing input, such as spicy_rt::waitForInput(); HILTI-side type definitions
for Spicy-specific types, such as for a sink). This functionality is declared in spicy/lib/spicy_rt.
spicy and implemented in C++ in libspicy-rt.a.

Category 5 Private HILTI-side library functionality for use by C++ code generated from HILTI code. This is declared
by hilti/include/rt/libhilti.h inside the hilti::rt::detail namespace. The functionality
is implemented in libhilti-rt.a. (The generated C++ code uses public hilti::rt functionality from
Category 3 as well.)

2.10. Developer’s Manual 145

Spicy, Release 1.4.0

Note: This category does not have any Spicy-side logic (by definition, because Spicy does not generate C++
code directly). Everything in libspicy-rt.a, and spicy::rt::detail is covered by one of the other
categories.

What goes where?

Think of Category 1 as the “Spicy standard library”: functionality for user-side Spicy code to leverage.

Category 2 is the same for HILTI, except that the universe of HILTI users remains extremely small right now (it’s just
Spicy and people writing tests).

Category 3 is our client-side C++ API for host applications to drive Spicy parsers and retrieve results.

When adding new functionality, one needs to decide between the HILTI and Spicy sides. Rules of thumb:

1. If it’s “standard library”-type stuff that’s meant for Spicy users to import, make it part of Category 1.

2. If it’s something that’s specific to parsing, add it to the Spicy side, either Category 3 for public functionality
meant to be used by host applications; or Category 4 if it’s something needed just by the generated HILTI code
doing the parsing.

3. If it’s something that’s generic enough to be used by other HILTI applications (once we get them), add it to the
HILTI side, either Category 2 or 5. Think, e.g., a Zeek script compiler.

2.10.2 Testing

Spicy’s testing & CI setup includes several pieces that we discuss in the following.

TLDR; If you make changes, make sure that make check runs through. You need the right clang-format (see
Formatting) and clang-tidy (see Static analysis) versions for that (from Clang >=10). If you don’t have them (or
want to save time), run at least make test. If that still takes too long for you, run make test-core.

BTest

Most tests are end-to-end tests that work from Spicy (or HILTI) source code and check that everything compiles and
produces the expected output. We use BTest to drive these, very similar to Zeek. make test from the top-level
directory will execute these tests. You get the same effect by changing into tests/ and running btest -j there
(-j parallelizes test execution).

The most important BTest options are:

• -d prints debugging output for failing tests to the console

• -f diag.log records the same debugging output into diag.log

• -u updates baselines when output changes in expected ways (don’t forget to commit the updates)

There are some alternatives to running just all tests, per the following:

146 Chapter 2. Documentation

https://github.com/zeek/btest

Spicy, Release 1.4.0

Running tests using installation after make install

By default, btests are running completely out of the source & build directories. If you run btest -a
installation, BTest will instead switch to pulling everything from their installation locations. If you have already
deleted the build directory, you also need to have the environment variable SPICY_INSTALLATION_DIRECTORY
point to your installation prefix, as otherwise BTest has no way of knowing where to find Spicy.

Unit tests

There’s a growing set of units test. These are using doctest and are executed through btest as well, so just running
tests per above will have these included.

Alternatively, the test binaries in the build directory can be executed to exercise the tests, or one can use the check
build target to execute all unit tests.

Sanitizers

To build tools and libraries with support for Clang’s address/leak sanitizer, configure with --enable-sanitizer.
If Clang’s asan libraries aren’t in a standard runtime library path, you’ll also need to set LD_LIBRARY_PATH
(Linux) or DYLD_LIBRARY_PATH (macOS) to point there (e.g., LD_LIBRARY_PATH=/opt/clang9/lib/
clang/9.0.1/lib/linux).

When using the Spicy plugin for Zeek and Zeek hasn’t been compiled with sanitizer support, you’ll also need
to set LD_PRELOAD (Linux) or DYLD_INSERT_LIBRARIES (macOS) to the shared asan library to use
(e.g., LD_PRELOAD=/data/clang9/lib/clang/9.0.1/lib/linux/libclang_rt.asan-x86_64.
so). Because you probably don’t want to set that permanently, the test suite pays attention to a variable
ZEEK_LD_PRELOAD: If you set that before running btest to the path you want in LD_PRELOAD, the relevant
tests will copy the value for running Zeek.

To make the sanitizer symbolize its output you need to set the ASAN_SYMBOLIZER_PATH environment variable to
point to the llvm-symbolizer binary, or make sure llvm-symbolizer is in your PATH.

Note: As we are running one of the CI build with sanitizers, it’s ok not to run this locally on a regular basis during
development.

Code Quality

Our CI runs the Formatting and Static analysis checks, and will fail if any of that doesn’t pass. To execute these locally,
run the make target format and tidy, respectively. Don’t forget to set CLANG_FORMAT and CLANG_TIDY to the
right version of the binary if they aren’t in your PATH.

CI also runs pre-commit with a configuration pre-configured in .pre-commit-config.yaml. To run that locally
on every commit, install pre-commit and then put its git hook in place through executing pre-commit install;
see the installation instructions for more details.

2.10. Developer’s Manual 147

https://pre-commit.com
https://pre-commit.com/#install

Spicy, Release 1.4.0

Docker Builds

We are shipping a number of Docker files in docker/; see Using Docker for more information. As part of our CI, we
make sure these build OK and pass btest -a installation. If you have Docker available, you can run these
individually yourself through make test-<platform> in docker/. However, usually it’s fine to leave this to
CI.

How Test Your Branch

If you run make check in the top-level directory you get the combination of all the btests, formatting, and linting.
That’s the best check to do to make sure your branch is in good shape, in particular before filing a pull request.

2.10.3 Debugging

The user manual’s debugging section serves as a good starting point for development-side debugging as well—it’s
often the same mechanisms that help understand why something’s not working as expected. In particular, looking at
the generated HILTI & C++ code often shows quickly what’s going on.

That section describes only runtime debugging output. The Spicy toolchain also has a set of compile-time debug
output streams that shine light on various parts of the compiler’s operation. To activate that output, both spicyc
and spicy-driver (and hiltic as well) take a -D option accepting a comma-separated list of stream tags. The
following choices are available:

ast-dump-iterations The compiler internally rewrites ASTs in multiple rounds until they stabilize. Activating
this stream will print the ASTs into files dbg.* on disk after each round. This is pretty noisy, and maybe most
helpful as a last resort when it’s otherwise hard to understand some aspects of AST processing without seeing
really all the changes.

ast-final Prints out all the final ASTs, with all transformations, ID & operator resolving, etc fully applied (and
just before final validation).

ast-orig Prints out all the original ASTs, before any changes are applied.

ast-pre-transformed Prints out ASTs just before the AST transformation passes kick in. Note that “transfor-
mation” here refers to a specific pass in the pipeline that’s primarily used for Spicy-to-HILTI AST rewriting.

ast-resolved Prints out ASTs just after the pass that resolves IDs and operators has concluded. Note that this
happens once per round, with progressively more nodes being resolved.

ast-scopes Prints out ASTs just after scopes have been built for all nodes, with the output including the scopes.
Note that this happens once per round, with progressively more nodes being resolved.

ast-transformed Prints out ASTs just after the AST transformation passes kick in. Note that “transformation”
here refers to a specific pass in the pipeline that’s primarily used for Spicy-to-HILTI AST rewriting.

ast-codegen Prints out the ASTs used for C++ code generation. These are the final ASTs with possibly additional
global optimizations applied to them.

compiler Prints out a various progress updates about the compiler’s internal workings. Note that driver is often
a better high-level starting point.

driver Prints out the main high-level steps while going from source code to final compiler output. This stream
provides a good high-level overview what’s going on, with others going into more detail on specific parts.

grammar Prints out the parsing grammars that Spicy’s parser generator creates before code generation.

jit Prints out details about the JIT process.

parser Prints out details about flex/bison processing.

148 Chapter 2. Documentation

Spicy, Release 1.4.0

resolver Prints out a detailed record of how, and why, IDs and operators are resolved (or not) during AST rewriting.

2.10.4 Benchmarking

End-to-end Parsers

We have a Benchmarking script that builds the HTTP and DNS parsers, runs them on traces both with and without
Zeek, and then reports total execution times. The script also compares times against Zeek’s standard analyzers. The
following summarizes how to use that script.

Preparation

1. You need to build both Spicy and Zeek in release mode (which is the default for both).

2. You need sufficiently large traces of HTTP and DNS traffic and preprocess them into the right format. We
normally use Zeek’s M57 testsuite traces for this, and have prepared a prebuilt archive of the processed data that
you can just download and extract: spicy-benchmark-m57.tar.xz (careful, it’s large!).

To preprocess some other trace trace.pcap, do the following:

• Extract HTTP and DNS sub-traces into spicy-http.pcap and spicy-dns.pcap, respectively (do
not change the file names):

tcpdump -r trace.pcap -w spicy-http.pcap tcp port 80
tcpdump -r trace.pcap -w spicy-dns.pcap udp port 53

• Run Zeek on these traces with the record-spicy-batch.zeek script that comes with Spicy:

zeek -br spicy-http.pcap zeek/scripts/record-spicy-batch.zeek
→˓SpicyBatch::filename=spicy-http.dat
zeek -br spicy-dns.pcap zeek/scripts/record-spicy-batch.zeek
→˓SpicyBatch::filename=spicy-dns.dat

• Move traces and resulting data files into a separate directory:

mkdir my-benchmark-data
mv spicy-{http,dns}.pcap spicy-{http,dns}.data my-benchmark-data/

• Now you can use that my-benchmark-data/ directory with the Benchmarking script, as shown below.

Execution

1. Use scripts/run-benchmark script to build/recompile the parsers. It’s easiest to run out of the Spicy
build directory (see its usage message for setting paths otherwise). Watch for warnings about accidentally using
debug versions of Spicy or Zeek:

cd build
../scripts/run-benchmark build

This will put all precompiled code into ./benchmark.

2. Run the benchmark script with a directory containing your preprocessed data. If you’re using the provided M57
archive:

2.10. Developer’s Manual 149

https://github.com/zeek/zeek-testing/blob/master/traces.cfg
https://download.zeek.org/data/spicy-benchmark-m57.tar.xz

Spicy, Release 1.4.0

../scripts/run-benchmark -t /path/to/spicy-benchmark-m57/long run

http-static 1.58 1.54 1.56
http-hlto 1.74 1.75 1.75

http-zeek-spicy 4.97 4.87 5.02 conn.log=2752 http.
→˓log=4833
http-zeek-std 3.69 3.59 3.74 conn.log=2752 http.

→˓log=4906

dns-static 0.01 0.01 0.01
dns-hlto 0.01 0.01 0.01

dns-zeek-spicy 0.97 0.94 0.97 conn.log=3458 dns.
→˓log=3458

dns-zeek-std 0.80 0.76 0.76 conn.log=3464 dns.
→˓log=3829

Each line is three executions of the same command. Values are user time in seconds.

The run-benchmark script leaves its precompiled code in a subdirectory ./benchmark. In particular, you will
find static binaries there that you can profile. For example, with perf on Linux:

perf record --call-graph dwarf -g ./benchmark/http-opt -U -F spicy-benchmark-m57/
→˓long/spicy-http.dat
perf report -G

Microbenchmarks

Todo: Add fiber benchmark.

2.10.5 Style

Todo: This is very preliminary. We’ll extend it over time. It’s also not consistently applied everywhere yet. Working
on that.

Tooling

Spicy ships with a set of linter configurations to enforce some of the style guidelines documented below. We use
pre-commit to run linters on each commit.

After cloning the repository, one can install the commit hooks by running the following command from the root of the
checkout:

$ pre-commit install && pre-commit install --hook-type commit-msg
pre-commit installed at .git/hooks/pre-commit
pre-commit installed at .git/hooks/commit-msg

With installed hooks the configured linters check the code after each commit. To run linters standalone one can use
the following:

150 Chapter 2. Documentation

https://pre-commit.com/

Spicy, Release 1.4.0

$ pre-commit run -a

See the pre-commit CLI documentation for more information on how pre-commit can be used.

Note: Some linters might require that a full build was performed or additional external tooling, see e.g., Formatting.

Commit Messages

• Provide meaningful commit messages. Start the commit message with a one line summary and then explain at
a high-level what’s going on, including in particular any new functionality and changes to existing semantics.
Include short examples of functionality if possibles. (Expect people to read your commit messages. :)

• If the commit refers to ticket or PR, include the number into the commit message.

• Aim to make commits self-containing chunks of functionality. Rebase and squash before pushing upstream.

• Formatting aspects of commit messages are linted with gitlint via pre-commit hooks, see Tooling. In particular
we enforce that summary lines start with a capital letter and end in a period, and length limits for both summary
and body lines.

Formatting

Spicy comes with a clang-format configuration that enforces a canonical style. We require clang-format ver-
sion >= 10 because we need a style option that wasn’t available earlier. Formatting is checked by a clang-format
linter which automatically pulls in a suitable clang-format binary, see the Tooling section.

Spicy’s CI runs pre-commit run clang-format as part of its code checks and will abort if there’s anything
not formatted as expected.

Static analysis

Spicy also comes with a clang-tidy configuration, as well as Makefile targets similar to the ones for formatting:
make tidy will check the code, and make tidy-fixit will apply fixes automatically where clang-tidy is
able to. Note that the latter can sometimes make things worse: Double-check git diff before committing anything.

You can set the environment variable CLANG_TIDY to the full path of the clang-tidy to ensure the right version
is found (which, similar to clang-format, needs to be from Clang >= 10).

Spicy’s CI runs make tidy as part of its code checks and will abort if there’s anything not formatted as expected.

Code Conventions

Identifiers

• Class methods: lowerCamelCase() for public and protected methods; _lowerCamelCase() for private
methods.

• Class member constants & variables: lower_case for public members, and
_lower_case_with_leading_underscore for private members.

• Global function: lowerCamelCase()

2.10. Developer’s Manual 151

https://pre-commit.com/#cli
https://jorisroovers.com/gitlint/

Spicy, Release 1.4.0

Comments

• In header files:

– Public namespace (i.e., anything not in *::detail::*)

* Add Doxygen comments to all namespace elements.

* Add Doxygen comments to all public and protected members of classes. (Exceptions: Default
constructors; destructors; default operators; “obvious” operators, such as basic constructors and
straight-forward comparisons; obvious getters/setters).

– Private namespace (i.e., anything in *::detail::*)

* Add a brief sentence or two to all namespace elements that aren’t obvious.

* Add a brief sentence or two to all class members that aren’t obvious.

• In implementation files

– For elements that aren’t declared in a separate header file, follow the rules for headers defining elements
of the private namespace.

– Inside methods and functions, comment liberally but not needlessly. Briefly explain the main reasoning
behind non-obvious logic, and introduce separate parts inside larger chunks of code.

Doxygen style

• Always start with a brief one-sentence summary in active voice (“Changes X to Y.”)

• For functions and methods, include @param and @return tags even if it seems obvious what’s going on. Add
@throws if the function/method raises an exception in a way that’s considered part of its specific semantics.

2.10.6 C++ API documentation

The generated C++ API documentation can be found here.

152 Chapter 2. Documentation

../_static/doxygen/index.html

CHAPTER

THREE

INDEX

• genindex

• modindex

• search

153

Spicy, Release 1.4.0

154 Chapter 3. Index

INDEX

Symbols
%on_gap (method), 85
%on_overlap (method), 85
%on_skipped (method), 85
%on_undelivered (method), 85

A
address::Equal (operator), 66
address::family (method), 66
address::Unequal (operator), 66

B
bitfield::Member (operator), 67
bool_::Equal (operator), 67
bool_::Unequal (operator), 67
bytes::at (method), 68
bytes::Begin (operator), 69
bytes::decode (method), 68
bytes::End (operator), 69
bytes::Equal (operator), 69
bytes::find (method), 68
bytes::Greater (operator), 69
bytes::GreaterEqual (operator), 69
bytes::In (operator), 69
bytes::InInv (operator), 69
bytes::iterator::Deref (operator), 70
bytes::iterator::Difference (operator), 70
bytes::iterator::Equal (operator), 70
bytes::iterator::Greater (operator), 70
bytes::iterator::GreaterEqual (operator),

70
bytes::iterator::IncrPostfix (operator), 70
bytes::iterator::IncrPrefix (operator), 70
bytes::iterator::Lower (operator), 70
bytes::iterator::LowerEqual (operator), 70
bytes::iterator::Sum (operator), 70
bytes::iterator::SumAssign (operator), 70
bytes::iterator::Unequal (operator), 70
bytes::join (method), 68
bytes::lower (method), 68
bytes::Lower (operator), 69
bytes::LowerEqual (operator), 69

bytes::match (method), 68
bytes::Size (operator), 69
bytes::split (method), 68
bytes::split1 (method), 68
bytes::starts_with (method), 68
bytes::strip (method), 68
bytes::sub (method), 68
bytes::Sum (operator), 69
bytes::SumAssign (operator), 69, 70
bytes::to_int (method), 68, 69
bytes::to_time (method), 69
bytes::to_uint (method), 69
bytes::Unequal (operator), 70
bytes::upper (method), 69

E
enum_::Call (operator), 71
enum_::Cast (operator), 71
enum_::Equal (operator), 71
enum_::has_label (method), 71
enum_::Unequal (operator), 71

I
integer::BitAnd (operator), 72
integer::BitOr (operator), 72
integer::BitXor (operator), 72
integer::Cast (operator), 72, 73
integer::DecrPostfix (operator), 73
integer::DecrPrefix (operator), 73
integer::Difference (operator), 73
integer::DifferenceAssign (operator), 73
integer::Division (operator), 73
integer::DivisionAssign (operator), 73
integer::Equal (operator), 73
integer::Greater (operator), 73
integer::GreaterEqual (operator), 73
integer::IncrPostfix (operator), 74
integer::IncrPrefix (operator), 74
integer::Lower (operator), 74
integer::LowerEqual (operator), 74
integer::Modulo (operator), 74
integer::Multiple (operator), 74

155

Spicy, Release 1.4.0

integer::MultipleAssign (operator), 74
integer::Negate (operator), 74
integer::Power (operator), 74
integer::ShiftLeft (operator), 74
integer::ShiftRight (operator), 74
integer::SignNeg (operator), 74
integer::Sum (operator), 74, 75
integer::SumAssign (operator), 75
integer::Unequal (operator), 75

L
list::Begin (operator), 76
list::End (operator), 76
list::Equal (operator), 76
list::Size (operator), 76
list::Unequal (operator), 76

M
map::Begin (operator), 77
map::clear (method), 77
map::Delete (operator), 77
map::End (operator), 77
map::Equal (operator), 77
map::get (method), 77
map::In (operator), 77
map::Index (operator), 77
map::IndexAssign (operator), 77
map::InInv (operator), 77
map::iterator::Deref (operator), 78
map::iterator::Equal (operator), 78
map::iterator::IncrPostfix (operator), 78
map::iterator::IncrPrefix (operator), 78
map::iterator::Unequal (operator), 78
map::Size (operator), 77
map::Unequal (operator), 78

O
optional::Deref (operator), 78

P
port::Equal (operator), 79
port::protocol (method), 79
port::Unequal (operator), 79

R
real::Cast (operator), 79
real::Difference (operator), 80
real::DifferenceAssign (operator), 80
real::Division (operator), 80
real::DivisionAssign (operator), 80
real::Equal (operator), 80
real::Greater (operator), 80
real::GreaterEqual (operator), 80

real::Lower (operator), 80
real::LowerEqual (operator), 80
real::Modulo (operator), 80
real::Multiple (operator), 80
real::MultipleAssign (operator), 80
real::Power (operator), 80
real::SignNeg (operator), 80
real::Sum (operator), 80
real::SumAssign (operator), 80
real::Unequal (operator), 80
regexp::find (method), 81
regexp::match (method), 81
regexp::match_groups (method), 81
regexp::token_matcher (method), 81

S
set::Add (operator), 82
set::Begin (operator), 82
set::clear (method), 82
set::Delete (operator), 82
set::End (operator), 82
set::Equal (operator), 82
set::In (operator), 82
set::InInv (operator), 82
set::iterator::Deref (operator), 83
set::iterator::Equal (operator), 83
set::iterator::IncrPostfix (operator), 83
set::iterator::IncrPrefix (operator), 83
set::iterator::Unequal (operator), 83
set::Size (operator), 82
set::Unequal (operator), 82
sink::close (method), 83
sink::connect (method), 83
sink::connect_filter (method), 83
sink::connect_mime_type (method), 83
sink::gap (method), 84
sink::sequence_number (method), 84
sink::set_auto_trim (method), 84
sink::set_initial_sequence_number

(method), 84
sink::set_policy (method), 84
sink::Size (operator), 85
sink::skip (method), 84
sink::trim (method), 84
sink::write (method), 84
stream::at (method), 86
stream::Begin (operator), 86
stream::End (operator), 86
stream::freeze (method), 86
stream::is_frozen (method), 86
stream::iterator::Deref (operator), 87
stream::iterator::Difference (operator), 87
stream::iterator::Equal (operator), 87
stream::iterator::Greater (operator), 87

156 Index

Spicy, Release 1.4.0

stream::iterator::GreaterEqual (operator),
87

stream::iterator::IncrPostfix (operator),
87

stream::iterator::IncrPrefix (operator), 87
stream::iterator::is_frozen (method), 86
stream::iterator::Lower (operator), 87
stream::iterator::LowerEqual (operator), 87
stream::iterator::offset (method), 86
stream::iterator::Sum (operator), 87
stream::iterator::SumAssign (operator), 87
stream::iterator::Unequal (operator), 87
stream::Size (operator), 86
stream::SumAssign (operator), 86
stream::trim (method), 86
stream::Unequal (operator), 86
stream::unfreeze (method), 86
stream::view::advance (method), 87
stream::view::advance_to_next_data

(method), 87
stream::view::at (method), 87
stream::view::Equal (operator), 88
stream::view::find (method), 87
stream::view::In (operator), 88
stream::view::InInv (operator), 88
stream::view::limit (method), 88
stream::view::offset (method), 88
stream::view::Size (operator), 88
stream::view::starts_with (method), 88
stream::view::sub (method), 88
stream::view::Unequal (operator), 88
string::encode (method), 89
string::Equal (operator), 89
string::Modulo (operator), 89
string::Size (operator), 89
string::Sum (operator), 89
string::Unequal (operator), 89
struct::HasMember (operator), 90
struct::Member (operator), 90
struct::TryMember (operator), 90
struct::Unset (operator), 90

T
time::Difference (operator), 75, 91
time::Equal (operator), 75, 91
time::Greater (operator), 75, 91
time::GreaterEqual (operator), 76, 91
time::Lower (operator), 76, 91
time::LowerEqual (operator), 76, 91
time::nanoseconds (method), 75, 90
time::seconds (method), 75, 90
time::Sum (operator), 76, 91
time::Unequal (operator), 76, 91
tuple::CustomAssign (operator), 91

tuple::Equal (operator), 91
tuple::Index (operator), 91
tuple::Member (operator), 91
tuple::Unequal (operator), 91

U
unit::backtrack (method), 92
unit::connect_filter (method), 92
unit::context (method), 92
unit::find (method), 92
unit::forward (method), 92
unit::forward_eod (method), 92
unit::HasMember (operator), 93
unit::input (method), 92
unit::Member (operator), 93
unit::offset (method), 92
unit::position (method), 93
unit::set_input (method), 93
unit::TryMember (operator), 93
unit::Unset (operator), 93

V
vector::assign (method), 94
vector::at (method), 94
vector::back (method), 94
vector::Begin (operator), 94
vector::End (operator), 94
vector::Equal (operator), 94
vector::front (method), 94
vector::Index (operator), 94
vector::iterator::Deref (operator), 95
vector::iterator::Equal (operator), 95
vector::iterator::IncrPostfix (operator),

95
vector::iterator::IncrPrefix (operator), 95
vector::iterator::Unequal (operator), 95
vector::pop_back (method), 94
vector::push_back (method), 94
vector::reserve (method), 94
vector::resize (method), 94
vector::Size (operator), 94
vector::sub (method), 94
vector::Sum (operator), 94
vector::SumAssign (operator), 94
vector::Unequal (operator), 94

Index 157

	Getting in Touch
	Documentation
	Installation
	Getting Started
	Frequently Asked Questions
	Tutorial: A Real Analyzer
	Programming in Spicy
	Toolchain
	Zeek Integration
	Custom Host Applications
	Release Notes
	Developer’s Manual

	Index
	Index

