

 Jun 21, 2022.

Spicy — Generating Robust Parsers for Protocols & File Formats

http-request.spicy

module HTTP;

const Token = /[^ \t\r\n]+/;
const WhiteSpace = /[\t]+/;
const NewLine = /\r?\n/;

public type RequestLine = unit {
 method: Token;
 : WhiteSpace;
 uri: Token;
 : WhiteSpace;
 version: Version;
 : NewLine;

 on %done { print self; }
};

type Version = unit {
 : /HTTP\//;
 number: /[0-9]+\.[0-9]+/;
};

echo "GET /index.html HTTP/1.0" | spicy-driver http-request.spicy
[$method=b"GET", $uri=b"/index.html", $version=[$number=b"1.0"]]

	Overview
	Spicy is a parser generator that makes it easy to create robust
C++ parsers for network protocols, file formats, and more. Spicy
is a bit like a “yacc for protocols”, but it’s much more than
that: It’s an all-in-one system enabling developers to write
attributed grammars that describe both syntax and semantics of an
input format using a single, unified language. Think of Spicy as a
domain-specific scripting language for all your parsing needs.

The Spicy toolchain turns such grammars into efficient C++ parsing
code that exposes an API to host applications for instantiating
parsers, feeding them input, and retrieving their results. At
runtime, parsing proceeds fully incrementally—and potentially
highly concurrently—on input streams of arbitrary size.
Compilation of Spicy parsers takes place either just-in-time at
startup (through a C++ compiler); or ahead-of-time either by
creating pre-compiled shared libraries, or by giving you generated
C++ code that you can link into your application.

Spicy comes with a Zeek plugin [https://github.com/zeek/spicy-plugin] that enables adding new
protocol and file analyzers to Zeek [https://www.zeek.org]
without having to write any C++ code. You define the grammar,
specify which Zeek events to generate, and Spicy takes care of the
rest. There’s also a Zeek analyzers [https://github.com/zeek/spicy-analyzers] package that provides
Zeek with several new, Spicy-based analyzers.

See our collection of example grammars to get a
sense of what Spicy looks like.

	License
	Spicy is open source and released under a BSD license, which
allows for pretty much unrestricted use as long as you leave the
license header in place. You fully own any parsers that Spicy
generates from your grammars.

	History
	Spicy was originally developed as a research prototype at the
International Computer Science Institute [http://www.icsi.berkeley.edu/] with funding from the U.S.
National Science Foundation [https://www.nsf.gov]. Since then,
Spicy has been rebuilt from the ground up by Corelight [https://www.corelight.com], which has contributed the new
implementation to the Zeek Project.

Getting in Touch

Having trouble using Spicy? Have ideas how to make Spicy better? We’d
like to hear from you!

	Report issues on the GitHub ticket tracker [https://github.com/zeek/spicy/issues].

	Ask the #spicy channel on Zeek’s Slack [https://zeek.org/connect].

	Propose ideas, and show what you’re doing, on GitHub’s Discussions [https://github.com/zeek/spicy/discussions].

	Subscribe to the Spicy mailing list [https://lists.zeek.org/mailman3/lists/spicy.lists.zeek.org].

	To follow development, subscribe to the commits mailing list [https://lists.zeek.org/mailman3/lists/spicy-commits.lists.zeek.org] (it
can be noisy!).

Documentation

	1. Installation
	1.1. Pre-built binaries

	1.2. Using Docker

	1.3. Building from source

	1.4. Parser development setup

	2. Getting Started
	2.1. Hello, World!

	2.2. A Simple Parser

	2.3. Zeek Integration

	2.4. Custom Host Application

	3. Frequently Asked Questions
	3.1. Spicy Language

	3.2. Toolchain

	3.3. Zeek

	4. Tutorial: A Real Analyzer
	4.1. Creating a Spicy Grammar

	4.2. Zeek Integration

	4.3. Next Steps

	5. Programming in Spicy
	5.1. Parsing

	5.2. Language

	5.3. Library

	5.4. Examples

	5.5. Debugging

	6. Toolchain
	6.1. spicy-build

	6.2. spicy-config

	6.3. spicyc

	6.4. spicy-driver

	6.5. spicy-dump

	7. Zeek Integration
	7.1. Terminology

	7.2. Installation

	7.3. Interface Definitions (“evt files”)

	7.4. Compiling Analyzers

	7.5. Controlling Zeek from Spicy

	7.6. Dynamic Protocol Detection (DPD)

	7.7. Configuration

	7.8. Debugging

	8. Custom Host Applications
	8.1. Integrating a Specific Parser

	8.2. Supporting Arbitrary Parsers

	8.3. API Documentation

	9. Release Notes
	9.1. Version 1.4

	9.2. Version 1.3

	9.3. Version 1.2

	9.4. Version 1.1

	9.5. Migrating from the old prototype

	10. Developer’s Manual
	10.1. Architecture

	10.2. Testing

	10.3. Debugging

	10.4. Benchmarking

	10.5. Style

	10.6. C++ API documentation

Index

	Index

	Module Index

	Search Page

1. Installation

Spicy can be installed from pre-built binaries (Linux, macOS) or with
Homebrew (macOS), executed via Docker containers (Linux), or built
from source (Linux, macOS, FreeBSD):

	Pre-built binaries

	Linux

	macOS

	Homebrew

	Pre-built binaries

	Using Docker

	Pre-requisites

	Linux

	macOS

	Using pre-built Docker images

	Build your own Spicy container

	Building from source

	Prerequisites

	Linux

	macOS

	FreeBSD

	Building Spicy

	Parser development setup

We generally aim to follow Zeek’s platform policy [https://github.com/zeek/zeek/wiki/Platform-Support-Policy] on which
platforms to support and test.

Note

Most of the installation options discussed in this chapter do
not include the Zeek plugin for Spicy. We recommend installing
the plugin through Zeek’s package manager; see its
installation instructions.

1.1. Pre-built binaries

1.1.1. Linux

We provide pre-built Spicy binaries for a range of Linux
distributions, both for the current release version and for
development builds made from the Git main branch.

These binary artifacts are distributed as either DEB or RPM packages
for the corresponding distribution; or, in a couple cases, as TAR
archives. To install the binaries, download the corresponding package
and execute one of the following:

	DEB packages
	# dpkg --install spicy.deb

	RPM packages
	# rpm -i spicy.rpm

	TAR archives
	The TAR archives need to be unpacked into /opt/spicy. Any
previous installation must be removed first:

rm -rf /opt/spicy && mkdir /opt/spicy
tar xf spicy.tar.gz -C /opt/spicy --strip-components=1

The binaries may require installation of additional dependencies; see
the Dockerfile for the respective platform for what’s needed.

	Platform

	Release Version

	Development Version

	Dockerfile

	Alpine 3.12

	TAR [https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_alpine_3_12.tar.gz]

	TAR [https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_alpine_3_12/packages/build/spicy-dev.tar.gz]

	Dockerfile [https://github.com/zeek/spicy/blob/main/docker/Dockerfile.alpine-3.12]

	CentOS Stream 8

	
	RPM [https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_centos_stream_8/packages/spicy-dev.rpm]

	Dockerfile [https://github.com/zeek/spicy/blob/main/docker/Dockerfile.centos-stream-8]

	Debian 9

	DEB [https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_debian9.deb]

	DEB [https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_debian9/packages/spicy-dev.deb]

	Dockerfile [https://github.com/zeek/spicy/blob/main/docker/Dockerfile.debian-9]

	Debian 10

	DEB [https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_debian10.deb]

	DEB [https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_debian10/packages/spicy-dev.deb]

	Dockerfile [https://github.com/zeek/spicy/blob/main/docker/Dockerfile.debian-10]

	Debian 11

	DEB [https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_debian11.deb]

	DEB [https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_debian11/packages/spicy-dev.deb]

	Dockerfile [https://github.com/zeek/spicy/blob/main/docker/Dockerfile.debian-11]

	Fedora 33

	RPM [https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_fedora33.rpm]

	RPM [https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_fedora33/packages/spicy-dev.rpm]

	Dockerfile [https://github.com/zeek/spicy/blob/main/docker/Dockerfile.fedora-33]

	Fedora 34

	RPM [https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_fedora34.rpm]

	RPM [https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_fedora33/packages/spicy-dev.rpm]

	Dockerfile [https://github.com/zeek/spicy/blob/main/docker/Dockerfile.fedora-34]

	Ubuntu 16

	DEB [https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_ubuntu16.deb]

	DEB [https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_ubuntu16/packages/spicy-dev.deb]

	Dockerfile [https://github.com/zeek/spicy/blob/main/docker/Dockerfile.ubuntu-16]

	Ubuntu 18

	DEB [https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_ubuntu18.deb]

	DEB [https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_ubuntu18/packages/spicy-dev.deb]

	Dockerfile [https://github.com/zeek/spicy/blob/main/docker/Dockerfile.ubuntu-18]

	Ubuntu 20

	DEB [https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_linux_ubuntu20.deb]

	DEB [https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/docker_ubuntu20/packages/spicy-dev.deb]

	Dockerfile [https://github.com/zeek/spicy/blob/main/docker/Dockerfile.ubuntu-20]

1.1.2. macOS

1.1.2.1. Homebrew

We provide a Homebrew formula for installation of Spicy. After
installing Homebrew [https://docs.brew.sh/Installation] add the
Zeek tap:

brew tap zeek/zeek

To install the most recent Spicy release version, execute:

brew install spicy

To instead install the current development version, execute:

brew install --HEAD spicy

1.1.2.2. Pre-built binaries

We provide TAR archives with pre-built binaries for the following
macOS versions:

	macOS

	Release Version

	Development Version

	Catalina (10.15)

	TAR [https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_macos_catalina.tar.gz]

	TAR [https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/macos_catalina/packages/build/spicy-dev.tar.gz]

	Big Sur (11)

	TAR [https://github.com/zeek/spicy/releases/download/v1.4.0/spicy_macos_big_sur.tar.gz]

	TAR [https://api.cirrus-ci.com/v1/artifact/github/zeek/spicy/macos_big_sur/packages/build/spicy-dev.tar.gz]

The TAR archives need to be unpacked into /opt/spicy. Any previous
installation must be removed first. To prevent macOS from quarantining
the files, you should download and unpack via the command line:

curl -L <link-per-above> -o spicy.tar.gz
rm -rf /opt/spicy && mkdir /opt/spicy
tar xf spicy.tar.gz -C /opt/spicy --strip-components 1

For JIT support, these binaries require an Xcode installation.

1.2. Using Docker

We provide pre-built Docker images on Docker
Hub. The Spicy distribution also comes with a set of Docker
files to create base images for all the supported Linux
distributions that put all of Spicy’s dependencies in place. We’ll walk
through using either of these in the following.

1.2.1. Pre-requisites

You first need to install Docker on your host system, if you haven’t yet.

1.2.1.1. Linux

All major Linux distributions provide Docker. Install it using your
package manager. Alternatively, follow the official
instructions [https://docs.docker.com/install/].

1.2.1.2. macOS

Install Docker Desktop for Mac [https://docs.docker.com/docker-for-mac] following the official
instructions [https://docs.docker.com/docker-for-mac/install].

Note

Docker Desktop for Mac uses a VM behind the scenes to host the
Docker runtime environment. By default it allocates 2 GB of RAM to
the VM. This is not enough to compile Spicy or Zeek and will cause
an error that looks something like this:

c++: internal compiler error: Killed (program cc1plus)
Please submit a full bug report,
with preprocessed source if appropriate.
See <file:///usr/share/doc/gcc-7/README.Bugs> for instructions.

This is due to the VM hitting an out-of-memory condition. To avoid
this you will need to allocate more RAM to the VM. Click on the Docker
Icon in your menubar and select “Preferences”. Click on the “Advanced”
tab and then use the slider to select 8 GB of RAM. Docker Desktop will
restart and then you will be ready to go.

1.2.2. Using pre-built Docker images

We provide the following Docker images:

	Spicy Version

	Image name/tag

	Source

	Release

	zeekurity/spicy [https://hub.docker.com/r/zeekurity/spicy]

	Dockerfile [https://github.com/zeek/spicy/blob/main/ci/Dockerfile.dockerhub]

	Development

	zeekurity/spicy-dev [https://hub.docker.com/r/zeekurity/spicy-dev]

	Dockerfile [https://github.com/zeek/spicy/blob/main/ci/Dockerfile.dockerhub]

These images include Zeek, the Spicy plugin for
Zeek, and the Zeek analyzer collection [https://github.com/zeek/spicy-analyzers] as well, so you can use
them to try out the full setup end-to-end.

To run the release image, execute the following command:

docker run -it zeekurity/spicy:latest

Spicy is installed in /opt/spicy on these images. The development
image is updated nightly.

1.2.3. Build your own Spicy container

You can build base images for your own Spicy setups through the
Docker files [https://github.com/zeek/spicy/blob/main/docker] coming with the distribution. These
images do not include Spicy itself, just the dependencies that it
needs on each platform, both for a source build and for the using the
corresponding binary packages. (The images do include Zeek, but not
the Zeek plugin.)

To build an image, go into Spicy’s docker directory and run
make to see the container platforms available:

cd docker
make

Run "make build-<platform>", then "make run-<platform>".

Available platforms:

 alpine-3.12
 centos-8-stream
 debian-10
 [...]

To build and run a container image based on, for example,
Debian 10, execute:

make build-debian-10
make run-debian-10

Note

The primary purpose of these Docker files is creating the
foundation for our CI pipelines. However, they also double as
verified installation instructions for setting up Spicy’s
dependencies on the various platforms, which is why we are
describing them here.

1.3. Building from source

1.3.1. Prerequisites

To build Spicy from source, you will need:

	For compiling the toolchain:

	A C++ compiler that supports C++17 (known to work are Clang >= 9 and GCC >= 9)

	CMake [https://cmake.org] >= 3.15

	Bison [https://www.gnu.org/software/bison] >= 3.0

	Flex [https://www.gnu.org/software/flex] >= 2.6

	Python [https://www.python.org/downloads/] >= 3.4

	Zlib [https://www.zlib.net] (no particular version)

	For testing:

	BTest [https://github.com/zeek/btest] >= 0.66 (pip install btest)

	Bash (for BTest)

	For building the documentation:

	Sphinx [https://www.sphinx-doc.org/en/master] >= 1.8

	Pygments [https://pygments.org/] >= 2.5

	Read the Docs Sphinx Theme [https://sphinx-rtd-theme.readthedocs.io/en/stable/] (pip install sphinx_rtd_theme)

In the following we record how to get these dependencies in place on
some popular platforms. Please file an issue [https://github.com/zeek/spicy/issues/] if you have
instructions for platforms not yet listed here.

1.3.1.1. Linux

See the corresponding Dockerfiles.

1.3.1.2. macOS

Make sure you have Xcode installed, including its command-line tools
(xcode-select --install).

If you are using Homebrew [https://brew.sh]:

brew install bison flex cmake ninja python@3.8 sphinx-doc
pip3 install btest sphinx_rtd_theme

If you are using MacPorts [https://www.macports.org]:

port install flex bison cmake ninja python38 py38-pip py38-sphinx py38-sphinx_rtd_theme
pip install btest

1.3.1.3. FreeBSD

See the prepare script [https://github.com/zeek/spicy/blob/main/ci/prepare_freebsd.sh] coming with
the Spicy distribution.

1.3.2. Building Spicy

Get the code:

git clone --recursive https://github.com/zeek/spicy

The short version to build Spicy is the usual process then:

./configure && make && make install

However, you may want to customize the build a bit, see the output
./configure --help for the available options. In particular, you
can use --prefix=/other/path to install into something else than
/usr/local.

The final configure output will summarize your build’s
configuration.

Note

For developers, the following configure options may be
particular useful:

	--enable-ccache: use the ccache compiler cache to speed up compilation

	--enable-debug: compile a non-optimized debug version

	--enable-sanitizer: enable address & leak sanitizers

	--generator=Ninja: use the faster ninja build system instead of make

Using Ninja and ccache will speed up compile times. On Linux,
compiling will also be quite a bit faster if you have the “Gold
linker” available. To check if you do, see if which ld.gold
returns anything. If yes, configure will automatically pick it
up.

Once you have configured Spicy, running make will change into the
newly created build directory and start the compilation there.
Once finished, make test will execute the test suite. It will take
a bit, but all tests should be passing (unless explicitly reported as
expected to fail). Finally, make install will install Spicy
system-wide into the configured prefix. If you are installing into a
non-standard location, make sure that <prefix>/bin is in your
PATH.

Note

You can also use the Spicy tools directly out of the build
directory without installing; the binaries land in build/bin.

To build Spicy’s documentation, run make inside the docs/ directory.
Documentation will then be located in build/doc/html.

1.4. Parser development setup

In order to speed up compilation of Spicy parsers, users can create a
cache of precompiled files. This cache is tied to a specific Spicy
version, and needs to be recreated each time Spicy is updated.

To precompile the files execute the following command:

spicy-precompile-headers

Note

By default the cache is located in the folder
.cache/spicy/<VERSION> inside the user’s home directory. This
location can be overridden by setting the environment variable
SPICY_CACHE to a different folder path, both when executing
spicy-precompile-headers and Spicy toolchain commands.

2. Getting Started

The following gives a short overview how to write and use Spicy
parsers. We won’t use many of Spicy’s features yet, but we we’ll walk
through some basic code examples and demonstrate typical usage of the
Spicy toolchain.

2.1. Hello, World!

Here’s a simple “Hello, world!” in Spicy:

module Test;

print "Hello, world!";

Assuming that’s stored in hello.spicy, you can compile and execute
the code with Spicy’s standalone compiler spicyc:

spicyc -j hello.spicy
Hello, world!

spicyc -j compiles the source code into native code on the fly
using your system’s C++ compiler, and then directly executes the
result. If you run spicyc -c hello.spicy, you will see the C++
code that Spicy generates behind the scenes.

You can also precompile the code into an object file, and then load
that for immediate execution:

spicyc -j -o hello.hlto hello.spicy
spicyc -j hello.hlto
Hello, world!

To compile Spicy code into an actual executable on disk, use
spicy-build:

spicy-build -o a.out hello.spicy
./a.out
Hello, world!

spicy-build is a small shell script that wraps spicyc -c and
runs the resulting code through the system’s C++ compiler to produce
an executable.

Note

[image: _images/hilti-logo.png]
Internally, Spicy employs another intermediary language called
HILTI that sits between the Spicy source code and the generated
C++ output. For more complex Spicy grammars, the HILTI code is
often far easier to comprehend than the final C++ code, in
particular once we do some actual parsing. To see that
intermediary HILTI code, execute spicy -p hello.spicy. The
.hlto extension comes from HILTI as well: It’s an
HILTI-generated object file.

2.2. A Simple Parser

To actually parse some data, we now look at a small example dissecting
HTTP-style request lines, such as: GET /index.html HTTP/1.0.

Generally, in Spicy you define parsers through types called “units”
that describe the syntax of a protocol. A set of units forms a
grammar. In practice, Spicy units typically correspond pretty
directly to protocol data units (PDUs) as protocol specifications tend
to define them. In addition to syntax, a Spicy unit type can also
specify semantic actions, called hooks, that will execute during
parsing as the corresponding pieces are extracted.

Here’s an example of a Spicy script for parsing HTTP request lines:

my-http.spicy

module MyHTTP;

const Token = /[^ \t\r\n]+/;
const WhiteSpace = /[\t]+/;
const NewLine = /\r?\n/;

type Version = unit {
 : /HTTP\//;
 number: /[0-9]+\.[0-9]+/;
};

public type RequestLine = unit {
 method: Token;
 : WhiteSpace;
 uri: Token;
 : WhiteSpace;
 version: Version;
 : NewLine;

 on %done {
 print self.method, self.uri, self.version.number;
 }
};

In this example, you can see a number of things that are typical for
Spicy code:

	A Spicy input script starts with a module statement defining
a namespace for the script’s content.

	The layout of a piece of data is defined by creating a unit
type. The type lists individual fields in the order they are
to be parsed. The example defines two such units:
RequestLine and Version.

	Each field inside a unit has a type and an optional name. The
type defines how that field will be parsed from raw input data.
In the example, all fields use regular expressions instead of
actual data types (uint32 would be an actual type), which
means that the generated parser will match these expressions
against the input stream. Assuming a match, the corresponding
value will then be recorded with type bytes, which is
Spicy’s type for binary data. Note how the regular expressions
can either be given directly as a field’s type (as in
Version), or indirectly via globally defined constants (as
in RequestLine).

	If a field has a name, it can later be referenced to access its
value. Consequently, in this example all fields with semantic
meanings have names, while those which are unlikely to be
relevant later do not (e.g., whitespace).

	A unit field can have another unit as its type; here that’s the
case for the version field in RequestLine; we say that
Version is a subunit of RequestLine. The meaning for
parsing is straight-forward: When parsing the top-level unit
reaches the field with the subunit, it switches to processing
that field according to the subunit’s definition. Once the
subunit is fully parsed, the top-level unit’s next field is
processed as normal from the remaining input data.

	We can specify code to be executed when a unit has been
completely parsed by implementing a hook called %done.
Inside the hook’s code body, statements can refer to the unit
instance currently being parsed through an implicitly defined
self identifier. Through self, they can then access any
fields already parsed by using a standard attribute notation
(self.<field>). As the access to version shows, this
also works for getting to fields nested inside subunits. In the
example, we tell the generated parser to print out three of the
parsed fields whenever a RequestLine has been fully parsed.

	The public keyword exposes the generated parser of a unit to
to external host applications wanting to deploy it. Only public
units can be used as the starting point for feeding input;
non-public subunits cannot be directly instantiated by host
applications.

Now let us see how we turn this into an actual parser that we can run.
Spicy comes with a tool called spicy-driver that acts as a
generic, standalone host application for Spicy parsers: It compiles
Spicy scripts into code and then feeds them its standard input as data
to parse. Internally, spicy-driver uses much of the same machinery
as spicyc, but provides additional code kicking off the actual
parsing as well.

With the above Spicy script in a file my-http.spicy, we can use
spicy-driver on it like this:

echo "GET /index.html HTTP/1.0" | spicy-driver my-http.spicy
GET, /index.html, 1.0

As you see, the print statement inside the %done hook wrote
out the three fields as we would expect (print automatically
separates its arguments with commas). If we pass something into the
driver that’s malformed according to our grammar, the parser will
complain:

echo "GET XXX/1.0" | spicy-driver my-http.spicy
[fatal error] terminating with uncaught exception of type spicy::rt::ParseError: parse error: failed to match regular expression (my-http.spicy:7)

Using spicy-driver in this way relies on Spicy’s support for
just-in-time compilation, just like spicyc -j. In the background,
there’s C++ code being generated and compiled without that we see it.
Just like in the earlier example, we can also either use spicyc to
precompile the C++ code into an object file that spicy-driver can
then load, or use spicy-build to give us an actual executable:

spicyc -j -o my-http.hlto my-http.spicy
echo "GET /index.html HTTP/1.0" | spicy-driver my-http.hlto
GET, /index.html, 1.0

spicy-build -o a.out my-http.spicy
echo "GET /index.html HTTP/1.0" | ./a.out
GET, /index.html, 1.0

Spicy also comes with another tool spicy-dump that
works similar to spicy-driver, but prints out the parsed fields at
the end, either in a custom ASCII representation or as JSON:

echo "GET /index.html HTTP/1.0" | spicy-dump my-http.hlto
MyHTTP::RequestLine {
 method: GET
 uri: /index.html
 version: MyHTTP::Version {
 number: 1.0
 }
}

echo "GET /index.html HTTP/1.0" | spicy-dump -J my-http.hlto
{"method":"GET","uri":"/index.html","version":{"number":"1.0"}}

If you want to see the actual parsing code that Spicy generates, use
spicyc again: spicyc -c my-http.spicy will show the C++ code,
and spicyc -p my-http.spicy will show the intermediary HILTI code.

2.3. Zeek Integration

Now let’s use our RequestLine parser with Zeek. For that we first
need to prepare some input, and get Zeek to load the required Spicy
plugin. Then we can use the grammar that we already got to add a new
protocol analyzer to Zeek.

Preparations

Because Zeek works from network packets, we first need a packet trace
with the payload we want to parse. We can’t just use a normal HTTP
session as our simple parser wouldn’t go further than just the first
line of the protocol exchange and then bail out with an error. So
instead, for our example we create a custom packet trace with a TCP
connection that carries just a single HTTP request line as its
payload:

tcpdump -i lo0 -w request-line.pcap port 12345 &
nc -l 12345 &
echo "GET /index.html HTTP/1.0" | nc localhost 12345
killall tcpdump nc

This gets us this trace file.

Next, we need to tell Zeek to load a Spicy plugin. If your Spicy build
has found Zeek during its configure run, it will have already
compiled and installed the plugin into Zeek’s system-wide plugin
directory. You can confirm that with zeek -N:

zeek -N
<...>
_Zeek::Spicy - Support for Spicy parsers (*.spicy, *.evt) (dynamic, version 0.3.0)

As you can see, Zeek now reports the Spicy plugin as available among
all the other plugins that it has already built-in.

If you don’t see the Spicy plugin in there, the installation might not
have had permission to write into the Zeek plugin directory. See
Installation for how to point Zeek to the right location
manually.

Adding a Protocol Analyzer

Now we can go ahead and add a new protocol analyzer to Zeek. We
already got the Spicy grammar to parse our connection’s payload, it’s
in my-http.spicy. In order to use this with Zeek, we have two
additional things to do: (1) We need to let Zeek know about our new
protocol analyzer, including when to use it; and (2) we need to define
at least one Zeek event that we want our parser to generate, so that
we can then write a Zeek script working with the information that it
extracts.

We do both of these by creating an additional control file for Zeek:

my-http.evt

	1
2
3
4
5

	protocol analyzer spicy::MyHTTP over TCP:
 parse originator with MyHTTP::RequestLine,
 port 12345/tcp;

on MyHTTP::RequestLine -> event MyHTTP::request_line($conn, self.method, self.uri, self.version.number);

The first block (lines 1-3) tells Zeek that we have a new protocol
analyzer to provide. The analyzer’s Zeek-side name is
spicy::MyHTTP, and it’s meant to run on top of TCP connections
(line 1). Lines 2-3 then provide Zeek with more specifics: The entry
point for originator-side payload is the MyHTTP::RequestLine unit
type that our Spicy grammar defines (line 2); and we want Zeek to
activate our analyzer for all connections with a responder port of
12345 (which, of course, matches the packet trace we created).

The second block (line 5) tells the Spicy plugin that we want to
define one event. On the left-hand side of that line we give the unit
that is to trigger the event. The right-hand side defines its name and
arguments. What we are saying here is that every time a RequestLine
line has been fully parsed, we’d like a MyHTTP::request_line event
to go to Zeek. Each event instance will come with four parameters:
Three of them are the values of corresponding unit fields, accessed
just through normal Spicy expressions (inside an event argument
expression, self refers to the unit instance that has led to the
generation of the current event). The first parameter, $conn, is a
“magic” keyword that lets the Spicy plugin pass the Zeek-side
connection ID (conn_id) to the event.

Now we got everything in place that we need for our new protocol
analyzer—except for a Zeek script actually doing something with the
information we are parsing. Let’s use this:

my-http.zeek

event MyHTTP::request_line(c: connection, method: string, uri: string, version: string)
	{
	print fmt("Zeek saw from %s: %s %s %s", cidorig_h, method, uri, version);
	}

You see an Zeek event handler for the event that we just defined,
having the expected signature of four parameters matching the types of
the parameter expressions that the *.evt file specifies. The
handler’s body then just prints out what it gets.

Finally we can put together our pieces by pointing Zeek to all the
files we got:

zeek -Cr request-line.pcap my-http.spicy my-http.evt my-http.zeek
Zeek saw from 127.0.0.1: GET /index.html 1.0

When Zeek starts up here, it passes any *.spicy and *.evt on
to the Spicy plugin, which then first kicks off all of its code
generation. Afterwards the plugin registers the new analyzer with the
Zeek event engine. Zeek then begins processing the packet trace as
usual, now activating our new analyzer whenever it sees a TCP
connection on port 12345. Accordingly, the MyHTTP::request_line
event gets generated once the parser gets to process the session’s
payload. The Zeek event handler then executes and prints the output we
would expect.

Note

By default, the Zeek plugin suppresses any output from Spicy-side
print statements. You can add Spicy::enable_print=T to the
command line to see it. In the example above, you would then get
an additional line of output: GET, /index.html, 1.0.

If you tried the above, you will have noticed that Zeek took a little
while to start up. That’s of course because we’re compiling C++ code
in the background again before any packet processing can even begin.
To accelerate the startup, we can once more precompile our analyzer
similar to what we did before with spicyc. We’ll use a different
tool here, though: spicyz is a small standalone application for
precompiling analyzers for the Spicy plugin to later load. We give
spicyz (1) the *.spicy and *.evt inputs that we handed to
Zeek above; and (2) an output *.hlto file to write the compiled
analyzer into:

spicyz -o my-http-analyzer.hlto my-http.spicy my-http.evt
zeek -Cr request-line.pcap my-http-analyzer.hlto my-http.zeek
Zeek saw from 127.0.0.1: GET /index.html 1.0

That zeek execution is now happening instantaneously.

2.4. Custom Host Application

Spicy parsers expose a C++ API that any application can leverage to
send them data for processing. The specifics of how to approach this
depend quite a bit on the particular needs of the application (Is it
just a single, static parser that’s needed; or a set not known
upfront, and compiled dynamically? Just a single input stream, or
many? All data in one buffer, or coming in incrementally? How does the
application want to access the parsed information?). That said, the
most basic use case is quite straight-forward: feeding data into a
specific parser. Here’s a small C++ program that parses input with our
RequestLine parser:

my-http.cc

#include <iostream>

#include <hilti/rt/libhilti.h>
#include <spicy/rt/libspicy.h>

using spicy::rt::fmt;

int main(int argc, char** argv) {
 hilti::rt::init();
 spicy::rt::init();

 spicy::rt::Driver driver;
 auto parser = driver.lookupParser("MyHTTP::RequestLine");
 assert(parser);

 try {
 std::ifstream in("/dev/stdin", std::ios::in);
 driver.processInput(**parser, in);
 } catch (const std::exception& e) {
 std::cerr << e.what() << std::endl;
 }

 spicy::rt::done();
 hilti::rt::done();
 return 0;
}

spicy-build -S -o a.out my-http.cc my-http.spicy
echo "GET /index.html HTTP/1.0" | ./a.out
GET, /index.html, 1.0
echo 'Hello, World!' | ./a.out
parse error: failed to match regular expression (my-http.spicy:7)

We are using -S with spicy-build because we’re providing our
own main function.

The code in my-http.cc is the core of what spicy-driver does
if we ignore the dynamic JIT compilation. See Custom Host Applications
for more.

3. Frequently Asked Questions

3.1. Spicy Language

Are Spicy’s global variables really global?

Indeed, they are. Changes to global variables become visible to all
Spicy code; their values are not associated with specific connections
or other dynamic state. If they are public, they can even be accessed
from other, unrelated modules as well. This all means that globals
often won’t be the right tool for the job; it’s rare that a parser
needs truly global state. Take a look at Contexts for a
different mechanism tying state to the current connection, which is a
much more common requirement.

3.2. Toolchain

Is there a way to speed up compilation of Spicy code?

Depending on the complexity of the Spicy code, processing through
spicyc/spicyz/spicy-driver may take a bit. The bulk of the
time time tends to be spent on compiling the generated C++ code; often
about 80-90%. Make sure to run spicy-precompile-headers to speed that up a little. During
development of new parsers, it also helps quite a bit to build
non-optimized debug versions by adding --debug to the
command-line.

If you want to see a break-down of where Spicy spends its time, run
the tools with --report-times. (In the output at the end, jit
refers to compiling generated C++ code).

3.3. Zeek

Do I need a Spicy installation for using the Zeek plugin?

No, if the Zeek plugin was compiled with --build-toolchain=no,
it will not require Spicy to be installed on the system. It will only
be able to load pre-compiled analyzers then (i.e., *.hlto files),
which you can create on a similar system that has Spicy installed
through spicyz. The build process will leave a binary
distribution inside your build directory at
zeek/plugin/Zeek_Spicy.tgz.

Does Spicy support Dynamic Protocol Detection (DPD)?

Yes, see the corresponding section on how to add it
to your analyzers.

Can I write a Layer 2 protocol analyzer with Spicy?

Yes, you can. In Zeek terminology a layer 2 protocol analyzer is a packet
analyzer, see the corresponding section on how
to declare such an analyzer.

I have print statements in my Spicy grammar, why do I not see any output when running Zeek?

The Zeek plugin by default disables the output of Spicy-side print
statements. To enable them, add Spicy::enable_print=T to the Zeek
command line (or redef Spicy::enable_print=T; to a Zeek script
that you are loading).

My analyzer recognizes only one or two TCP packets even though there are more in the input.

The Zeek Spicy plugin parses the sending and receiving sides of a TCP
connection each according to the given Spicy grammar. This means that
if more than one message can be sent per side the grammar needs to
allow for that. For example, if the grammar parses messages of the
protocol as Message, the top-level parsing unit given in the EVT
file needs to be able to parse a list of messages Message[].

A simple way to accomplish this is to introduce a parser which wraps
messages of the protocol:

type Message = unit {
 # Fields for messages of the protocol.
};

Parser used e.g., in EVT file.
public type Messages = unit {
 messages: Message[];
};

4. Tutorial: A Real Analyzer

In this chapter we will develop a simple protocol analyzer from
scratch, including full Zeek integration. Our analyzer will parse the
Trivial File Transfer Protocol (TFTP) in its original incarnation,
as described in RFC 1350 [https://tools.ietf.org/html/rfc1350].
TFTP provides a small protocol for copying files from a server to a
client system. It is most commonly used these days for providing boot
images to devices during initialization. The protocol is sufficiently
simple that we can walk through it end to end. See its Wikipedia page [https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol] for
more background.

Contents

	Creating a Spicy Grammar

	Parsing One Packet Type

	Generalizing to More Packet Types

	Using Enums

	Using Unit Parameters

	Complete Grammar

	Zeek Integration

	Compiling the Analyzer

	Activating the Analyzer

	Defining Events

	Detour: Zeek vs. TFTP

	Zeek Script

	Next Steps

4.1. Creating a Spicy Grammar

We start by developing Spicy grammar for TFTP. The protocol is
packet-based, and our grammar will parse the content of one TFTP
packet at a time. While TFTP is running on top of UDP, we will leave
the lower layers to Zeek and have Spicy parse just the actual UDP
application-layer payload, as described in Section 5 [https://tools.ietf.org/html/rfc1350#section-5] of the protocol
standard.

4.1.1. Parsing One Packet Type

TFTP is a binary protocol that uses a set of standardized, numerical
opcodes to distinguish between different types of packets—a common
idiom with such protocols. Each packet contains the opcode inside the
first two bytes of the UDP payload, followed by further fields that
then differ by type. For example, the following is the format of a
TFTP “Read Request” (RRQ) that initiates a download from a server:

 2 bytes string 1 byte string 1 byte (from RFC 1350)
 --
| Opcode | Filename | 0 | Mode | 0 |
 --

A Read Request uses an opcode of 1. The filename is a sequence of
ASCII bytes terminated by a null byte. The mode is another
null-terminated byte sequence that usually is either netascii,
octet, or mail, describing the desired encoding for data that
will be received.

Let’s stay with the Read Request for a little bit and write a Spicy
parser just for this one packet type. The following is a minimal Spicy
unit to parse the three fields:

module TFTP; # [1]

public type ReadRequest = unit { # [2]
 opcode: uint16; # [3]
 filename: bytes &until=b"\x00"; # [4]
 mode: bytes &until=b"\x00"; # [5]

 on %done { print self; } # [6]
};

Let’s walk through:

	[1] All Spicy source files must start with a module line
defining a namespace for their content. By convention, the
namespace should match what is being parsed, so we call ours
TFTP. Naming our module TFTP also implies saving it
under the name tftp.spicy, so that other modules can find it
through import TFTP;. See Modules for more on all of
this.

	[2] In Spicy, one will typically create a unit type for
each of the main data units that a protocol defines. We want to
parse a Read Request, so we call our type accordingly. We
declare it as public because we want to use this unit as the
starting point for parsing data. The following lines then lay
out the elements of such a request in the same order as the
protocol defines them.

	[3] Per the TFTP specification, the first field contains the
opcode as an integer value encoded over two bytes. For
multi-byte integer values, it is important to consider the byte
order for parsing. TFTP uses network byte order [https://en.wikipedia.org/wiki/Endianness#Networking] which
matches Spicy’s default, so there is nothing else for us to do
here. (If we had to specify the order, we would add the
&byte-order attribute).

	[4] The filename is a null-terminated byte sequence, which
we can express directly as such in Spicy: The filename field
will accumulate bytes until a null byte is encountered. Note
that even though the specification of a Read Request shows the
0 as separate element inside the packet, we don’t create a
field for it, but rather exploit it as a terminator for the file
name (which will not be included into the filename stored).

	[5] The mode operates just the same as the
filename.

	[6] Once we are done parsing a Read Request, we print out
the result for debugging.

We should now be able to parse a Read Request. To try it, we need the
actual payload of a corresponding packet. With TFTP, the format is
simple enough that we can start by faking data with printf
and pipe that into the Spicy tool spicy-driver:

printf '\000\001rfc1350.txt\000octet\000' | spicy-driver tftp.spicy
[$opcode=1, $filename=b"rfc1350.txt", $mode=b"octet"]

Here, spicy-driver compiles our ReadRequest unit into an
executable parser and then feeds it with the data it is receiving on
standard input. The output of spicy-driver is the result of our
print statement executing at the end.

What would we do with a more complex protocol where we cannot easily use
printf to create some dummy payload? We would probably have access
to some protocol traffic in pcap traces, however we can’t just feed
those into spicy-driver directly as they will contain all the
other network layers as well that our grammar does not handle (e.g.,
IP and UDP). One way to test with a trace would be proceeding with
Zeek integration at this point, so that we could let Zeek strip off
the base layers and then feed our parser only the TFTP payload.
However, during development it is often easier at first to extract
application-layer protocol data from the traces ourselves, write it
into files, and then feed those files into spicy-driver.

We can leverage Zeek for doing this extraction into files. If we had a
TCP-based protocol, doing so would be trivial because Zeek has that
functionality built in: When you run Zeek on a pcap trace and add
Conn::default_extract=T to the command line, it will write out all
the TCP streams into individual files. As TFTP is UDP-based, however,
we will use a custom script, udp-contents.zeek. When you run Zeek with that script on
trace, you will get one file per UDP packet each containing the
corresponding application-layer UDP payload (make sure to use this
with small traces only …).

Let’s use the UDP script with tftp_rrq.pcap, a tiny TFTP trace containing a single file
download from Wireshark’s pcap archive [https://wiki.wireshark.org/SampleCaptures#tftp]. tcpdump shows
us that the first packet indeed contains a Read Request:

tcpdump -ttnr tftp_rrq.pcap
1367411051.972852 IP 192.168.0.253.50618 > 192.168.0.10.69: 20 RRQ "rfc1350.txtoctet" [\|tftp]
1367411052.077243 IP 192.168.0.10.3445 > 192.168.0.253.50618: UDP, length 516
1367411052.081790 IP 192.168.0.253.50618 > 192.168.0.10.3445: UDP, length 4
[...]

Running Zeek on the trace with the udp-contents scripts produces
the expected content files:

zeek -r tftp_rrq.pcap udp-contents
ls udp-contents.orig.*
udp-contents.orig.1367411051.972852.dat
udp-contents.orig.1367411052.077243.dat
udp-contents.orig.1367411052.086300.dat
udp-contents.orig.1367411052.088995.dat
udp-contents.orig.1367411052.091675.dat
[...]

Per the timestamps included with the names, the first file is the one
containing our Read Request. We can pass that into our Spicy parser:

cat udp-contents.orig.1367411051.972852.dat | spicy-driver tftp.spicy
[$opcode=1, $filename=b"rfc1350.txt", $mode=b"octet"]

That gives us an easy way to test our TFTP parser.

4.1.2. Generalizing to More Packet Types

So far we can parse a Read Request, but nothing else. In fact, we are
not even examining the opcode yet at all to see if our input
actually is a Read Request. To generalize our grammar to other TFTP
packet types, we will need to parse the opcode on its own first,
and then use the value to decide how to handle subsequent data. Let’s
start over with a minimal version of our TFTP grammar that looks at
just the opcode:

module TFTP;

public type Packet = unit {
 opcode: uint16;

 on %done { print self; }
};

cat udp-contents.orig.1367411051.972852.dat | spicy-driver tftp.spicy
[$opcode=1]

Next we create a separate type to parse the fields that are specific
to a Read Request:

type ReadRequest = unit {
 filename: bytes &until=b"\x00";
 mode: bytes &until=b"\x00";
};

We do not declare this type as public because we will use it only
internally inside our grammar; it is not a top-level entry point for
parsing (that’s Packet now).

Now we need to tie the two units together. We can do that by adding
the ReadRequest as a field to the Packet, which will let Spicy
parse it as a sub-unit:

module TFTP;

public type Packet = unit {
 opcode: uint16;
 rrq: ReadRequest;

 on %done { print self; }
};

cat udp-contents.orig.1367411051.972852.dat | spicy-driver tftp.spicy
[$opcode=1, $rrq=[$filename=b"rfc1350.txt", $mode=b"octet"]]

However, this does not help us much yet: it still resembles our
original version in that it continues to hardcode one specific packet
type. But the direction of using sub-units is promising, we only need
to instruct the parser to leverage the opcode to decide what
particular sub-unit to use. Spicy provides a switch construct for
such dispatching:

module TFTP;

public type Packet = unit {
 opcode: uint16;

 switch (self.opcode) {
 1 -> rrq: ReadRequest;
 };

 on %done { print self; }
};

cat udp-contents.orig.1367411051.972852.dat | spicy-driver tftp.spicy
[$opcode=1, $rrq=[$filename=b"rfc1350.txt", $mode=b"octet"]]

The self keyword always refers to the unit instance currently
being parsed, and we use that to get to the opcode for switching on.
If it is 1, we descend down into a Read Request.

What happens if it is something other than 1? Let’s try it with
the first server-side packet, which contains a TFTP acknowledgment
(opcode 4):

cat udp-contents.resp.1367411052.081790.dat | spicy-driver tftp.spicy
[fatal error] terminating with uncaught exception of type spicy::rt::ParseError: parse error: no matching case in switch statement (:7:5-9:7)

Of course it is now easy to add another unit type for handling such
acknowledgments:

public type Packet = unit {
 opcode: uint16;

 switch (self.opcode) {
 1 -> rrq: ReadRequest;
 4 -> ack: Acknowledgement;
 };

 on %done { print self; }
};

type Acknowledgement = unit {
 num: uint16; # block number being acknowledged
};

cat udp-contents.resp.1367411052.081790.dat | spicy-driver tftp.spicy
[$opcode=4, $rrq=(not set), $ack=[$num=1]]

As expected, the output shows that our TFTP parser now descended into
the ack sub-unit while leaving rrq unset.

TFTP defines three more opcodes for other packet types: 2 is a
Write Request, 3 is file data being sent, and 5 is an error.
We will add these to our grammar as well, so that we get the whole
protocol covered (please refer to the RFC for specifics of each packet
type):

module TFTP;

public type Packet = unit {
 opcode: uint16;

 switch (self.opcode) {
 1 -> rrq: ReadRequest;
 2 -> wrq: WriteRequest;
 3 -> data: Data;
 4 -> ack: Acknowledgement;
 5 -> error: Error;
 };

 on %done { print self; }
};

type ReadRequest = unit {
 filename: bytes &until=b"\x00";
 mode: bytes &until=b"\x00";
};

type WriteRequest = unit {
 filename: bytes &until=b"\x00";
 mode: bytes &until=b"\x00";
};

type Data = unit {
 num: uint16;
 data: bytes &eod; # parse until end of data (i.e., packet) is reached
};

type Acknowledgement = unit {
 num: uint16;
};

type Error = unit {
 code: uint16;
 msg: bytes &until=b"\x00";
};

This grammar works well already, but we can improve it a bit more.

4.1.3. Using Enums

The use of integer values inside the switch construct is not
exactly pretty: they are hard to read and maintain. We can improve our
grammar by using an enumerator type with descriptive labels instead.
We first declare an enum type that provides one label for each
possible opcode:

type Opcode = enum { RRQ = 1, WRQ = 2, DATA = 3, ACK = 4, ERROR = 5 };

Now we can change the switch to look like this:

switch (self.opcode) {
 Opcode::RRQ -> rrq: ReadRequest;
 Opcode::WRQ -> wrq: WriteRequest;
 Opcode::DATA -> data: Data;
 Opcode::ACK -> ack: Acknowledgement;
 Opcode::ERROR -> error: Error;
 };

Much better, but there is a catch still: this will not compile because
of a type mismatch. The switch cases’ expressions have type
Opcode, but self.opcode remains of type uint16. That is
because Spicy cannot know on its own that the integers we parse into
opcode match the numerical values of the Opcode labels. But
we can convert the former into the latter explicitly by adding a
&convert attribute to the opcode field:

public type Packet = unit {
 opcode: uint16 &convert=Opcode($$);
 ...
};

This does two things:

	Each time an uint16 gets parsed for this field, it is not
directly stored in opcode, but instead first passed through the
expression that &convert specifies. Spicy then stores the
result of that expression, potentially adapting the field’s type
accordingly. Inside the &convert expression, the parsed value is
accessible through the special identifier $$.

	Our &convert expression passes the parsed integer into the
constructor for the Opcode enumerator type, which lets Spicy
create an Opcode value with the label that corresponds to the
integer value.

With this transformation, the opcode field now has type Opcode
and hence can be used with our updated switch statement. You can see
the new type for opcode in the output as well:

cat udp-contents.orig.1367411051.972852.dat | spicy-driver tftp.spicy
[$opcode=Opcode::RRQ, $rrq=[$filename=b"rfc1350.txt", $mode=b"octet"], $wrq=(not set), $data=(not set), $ack=(not set), $error=(not set)]

See On-the-fly Type Conversion with &convert for more on &convert, and
Enum for more on the enum type.

Note

What happens when Opcode($$) receives an integer that does not
correspond to any of the labels? Spicy permits that and will
substitute an implicitly defined Opcode::Undef label. It will
also retain the actual integer value, which can be recovered by
converting the enum value back to an integer.

4.1.4. Using Unit Parameters

Looking at the two types ReadRequest and WriteRequest, we see
that both are using exactly the same fields. That means we do not
really need two separate types here, and could instead define a
single Request unit to cover both cases. Doing so is
straight-forward, except for one issue: when parsing such a
Request, we would now lose the information whether we are seeing
read or a write operation. For our Zeek integration later it will be
useful to retain that distinction, so let us leverage a Spicy
capability that allows passing state into a sub-unit: unit
parameters. Here’s the corresponding excerpt after
that refactoring:

public type Packet = unit {
 opcode: uint16 &convert=Opcode($$);

 switch (self.opcode) {
 Opcode::RRQ -> rrq: Request(True);
 Opcode::WRQ -> wrq: Request(False);
 # ...
 };

 on %done { print self; }
};

type Request = unit(is_read: bool) {
 filename: bytes &until=b"\x00";
 mode: bytes &until=b"\x00";

 on %done { print "We got a %s request." % (is_read ? "read" : "write"); }
};

We see that the switch now passes either True or False
into the Request type, depending on whether it is a Read Request
or Write Request. For demonstration, we added another print
statement, so that we can see how that boolean becomes available
through the is_read unit parameter:

cat udp-contents.orig.1367411051.972852.dat | spicy-driver tftp.spicy
We got a read request.
[$opcode=Opcode::RRQ, $rrq=[$filename=b"rfc1350.txt", $mode=b"octet"], $wrq=(not set), $data=(not set), $ack=(not set), $error=(not set)]

Admittedly, the unit parameter is almost overkill in this
example, but it proves very useful in more complex grammars where one
needs access to state information, in particular also from
higher-level units. For example, if the Packet type stored
additional state that sub-units needed access to, they could receive
the Packet itself as a parameter.

4.1.5. Complete Grammar

Combining everything discussed so far, this leaves us with the
following complete grammar for TFTP, including the packet formats in
comments as well:

Copyright (c) 2021 by the Zeek Project. See LICENSE for details.
#
Trivial File Transfer Protocol
#
Specs from https://tools.ietf.org/html/rfc1350

module TFTP;

Common header for all messages:
#
2 bytes

| TFTP Opcode |

public type Packet = unit { # public top-level entry point for parsing
 op: uint16 &convert=Opcode($$);
 switch (self.op) {
 Opcode::RRQ -> rrq: Request(True);
 Opcode::WRQ -> wrq: Request(False);
 Opcode::DATA -> data: Data;
 Opcode::ACK -> ack: Acknowledgement;
 Opcode::ERROR -> error: Error;
 };
};

TFTP supports five types of packets [...]:
#
opcode operation
1 Read request (RRQ)
2 Write request (WRQ)
3 Data (DATA)
4 Acknowledgment (ACK)
5 Error (ERROR)
type Opcode = enum {
 RRQ = 0x01,
 WRQ = 0x02,
 DATA = 0x03,
 ACK = 0x04,
 ERROR = 0x05
};

Figure 5-1: RRQ/WRQ packet
#
2 bytes string 1 byte string 1 byte
--
| Opcode | Filename | 0 | Mode | 0 |
--

type Request = unit(is_read: bool) {
 filename: bytes &until=b"\x00";
 mode: bytes &until=b"\x00";
};

Figure 5-2: DATA packet
#
2 bytes 2 bytes n bytes

| Opcode | Block # | Data |

type Data = unit {
 num: uint16;
 data: bytes &eod;
};

Figure 5-3: ACK packet
#
2 bytes 2 bytes

| Opcode | Block # |

type Acknowledgement = unit {
 num: uint16;
};

Figure 5-4: ERROR packet
#
2 bytes 2 bytes string 1 byte

| Opcode | ErrorCode | ErrMsg | 0 |

type Error = unit {
 code: uint16;
 msg: bytes &until=b"\x00";
};

4.2. Zeek Integration

To turn the Spicy-side grammar into a Zeek analyzer, we need to
provide Spicy’s Zeek plugin with a description of how to employ it.
There are two parts to that: Telling Zeek when to activate the
analyzer, and defining events to generate. In addition, we will need a
Zeek-side script to do something with our new TFTP events. We will
walk through this in the following, starting with the mechanics of
compiling the Spicy analyzer for Zeek.

Before proceeding, follow the instructions to install the Zeek
plugin. You should now be seeing output similar
to this:

zeek -NN _Zeek::Spicy
_Zeek::Spicy - Support for Spicy parsers (*.spicy, *.evt, *.hlto) (dynamic, version x.y.z)

You should also have spicyz in your PATH:

which spicyz
/usr/local/zeek/bin/spicyz

Note that you need a very recent version of zkg to get spicyz
into your PATH automatically; refer to the plugin
instructions plugin for more.

4.2.1. Compiling the Analyzer

While the Spicy plugin for Zeek can compile Spicy code on the fly, it
is usually more convenient to compile an analyzer once upfront. Spicy
comes with a tool spicyz for that. The following
command line produces a binary object file tftp.hlto containing
the executable analyzer code:

spicyz -o tftp.hlto tftp.spicy

Below, we will prepare an additional interface definition file
tftp.evt that describes the analyzer’s integration into Zeek. We
will need to give that to spicyz as well, and our full
compilation command hence becomes:

spicyz -o tftp.hlto tftp.spicy tftp.evt

When starting Zeek, we add tftp.hlto to its command line:

zeek -r tftp_rrq.pcap tftp.hlto

Note

If you get an error from Zeek here, see Installation to
make sure the Spicy plugin is installed correctly.

4.2.2. Activating the Analyzer

In Getting Started, we already saw how to inform Zeek about a new
protocol analyzer. We follow the same scheme here and put the
following into tftp.evt, the analyzer definition file:

Note: When line number changes in this file, update the documentation that pulls it in.

protocol analyzer spicy::TFTP over UDP:

The first line provides our analyzer with a Zeek-side name
(spicy::TFTP) and also tells Zeek that we are adding an
application analyzer on top of UDP (over UDP). TFTP::Packet
provides the top-level entry point for parsing both sides of a TFTP
connection. Furthermore, we want Zeek to automatically activate our
analyzer for all sessions on UDP port 69 (i.e., TFTP’s well known
port). See Analyzer Setup for more details on defining
such a protocol analyzer section.

With this in place, we can already employ the analyzer inside Zeek. It
will not generate any events yet, but we can at least see the output of
the on %done { print self; } hook that still remains part of the
grammar from earlier:

zeek -r tftp_rrq.pcap tftp.hlto Spicy::enable_print=T
[$opcode=Opcode::RRQ, $rrq=[$filename=b"rfc1350.txt", $mode=b"octet"], $wrq=(not set), $data=(not set), $ack=(not set), $error=(not set)]

As by default, the Zeek plugin does not show the output of Spicy-side
print statements, we added Spicy::enable_print=T to the
command line to turn that on. We see that Zeek took care of the
lower network layers, extracted the UDP payload from the Read Request,
and passed that into our Spicy parser. (If you want to view more about
the internals of what is happening here, there are a couple kinds of
debug output available.)

You might be wondering why there is only one line of output, even
though there are multiple TFTP packets in our pcap trace. Shouldn’t
the print execute multiple times? Yes, it should, but it does not
currently: Due to some intricacies of the TFTP protocol, our analyzer
gets to see only the first packet for now. We will fix this later. For
now, we focus on the Read Request packet that the output above shows.

4.2.3. Defining Events

The core task of any Zeek analyzer is to generate events for Zeek
scripts to process. For binary protocols, events will often correspond
pretty directly to data units specified by their specifications—and
TFTP is no exception. We start with an event for Read/Write Requests
by adding this definition to tftp.evt:

import TFTP;

on TFTP::Request -> event tftp::request($conn);

The first line makes our Spicy TFTP grammar available to the rest of
the file. The line on ... defines one event: Every time a
Request unit will be parsed, we want to receive an event
tftp::request with one parameter: the connection it belongs to.
Here, $conn is a reserved identifier that will turn into the
standard connection record [https://docs.zeek.org/en/current/scripts/base/init-bare.zeek.html#type-connection]
record on the Zeek side.

Now we need a Zeek event handler for our new event. Let’s put this
into tftp.zeek:

event tftp::request(c: connection)
	{
	print "TFTP request", c$id;
	}

Running Zeek then gives us:

spicyz -o tftp.hlto tftp.spicy tftp.evt
zeek -r tftp_rrq.pcap tftp.hlto tftp.zeek
TFTP request, [orig_h=192.168.0.253, orig_p=50618/udp, resp_h=192.168.0.10, resp_p=69/udp]

Let’s extend the event signature a bit by passing further arguments:

import TFTP;

on TFTP::Request -> event tftp::request($conn, $is_orig, self.filename, self.mode);

This shows how each parameter gets specified as a Spicy expression:
self refers to the instance currently being parsed (self), and
self.filename retrieves the value of its filename field.
$is_orig is another reserved ID that turns into a boolean that
will be true if the event has been triggered by originator-side
traffic. On the Zeek side, our event now has the following signature:

event tftp::request(c: connection, is_orig: bool, filename: string, mode: string)
	{
	print "TFTP request", c$id, is_orig, filename, mode;
	}

spicyz -o tftp.hlto tftp.spicy tftp.evt
zeek -r tftp_rrq.pcap tftp.hlto tftp.zeek
TFTP request, [orig_h=192.168.0.253, orig_p=50618/udp, resp_h=192.168.0.10, resp_p=69/udp], T, rfc1350.txt, octet

Going back to our earlier discussion of Read vs Write Requests, we do
not yet make that distinction with the request event that we are
sending to Zeek-land. However, since we had introduced the is_read
unit parameter, we can easily separate the two by gating event
generation through an additional if condition:

import TFTP;

This now defines two separate events, each being generated only for
the corresponding value of is_read. Let’s try it with a new
tftp.zeek:

event tftp::read_request(c: connection, is_orig: bool, filename: string, mode: string)
	{
	print "TFTP read request", c$id, is_orig, filename, mode;
	}

event tftp::write_request(c: connection, is_orig: bool, filename: string, mode: string)
	{
	print "TFTP write request", c$id, is_orig, filename, mode;
	}

spicyz -o tftp.hlto tftp.spicy tftp.evt
zeek -r tftp_rrq.pcap tftp.hlto tftp.zeek
TFTP read request, [orig_h=192.168.0.253, orig_p=50618/udp, resp_h=192.168.0.10, resp_p=69/udp], T, rfc1350.txt, octet

If we look at the conn.log that Zeek produces during this run, we
will see that the service field is not filled in yet. That’s
because our analyzer does not yet confirm to Zeek that it has been
successful in parsing the content. To do that, we can extend our Spicy
TFTP grammar to call two helper functions that the Spicy plugin makes
available: zeek::confirm_protocol once we have successfully parsed
a request, and zeek::reject_protocol in case we encounter a
parsing error. While we could put this code right into tftp.spicy, we
prefer to store it inside separate Spicy file (zeek_tftp.spicy)
because this is Zeek-specific logic:

module Zeek_TFTP;

import zeek; # Library module provided by the Spicy plugin for Zeek.
import TFTP;

on TFTP::Request::%done {
 zeek::confirm_protocol();
}

on TFTP::Request::%error {
 zeek::reject_protocol("error while parsing TFTP request");
}

spicyz -o tftp.hlto tftp.spicy zeek_tftp.spicy tftp.evt
zeek -r tftp_rrq.pcap tftp.hlto tftp.zeek
TFTP read request, [orig_h=192.168.0.253, orig_p=50618/udp, resp_h=192.168.0.10, resp_p=69/udp], T, rfc1350.txt, octet
cat conn.log
[...]
1367411051.972852 C1f7uj4uuv6zu2aKti 192.168.0.253 50618 192.168.0.10 69 udp spicy_tftp - - - S0 - -0 D 1 48 0 0 -
[...]

Now the service field says TFTP! (There will be a 2nd connection in
the log that we are not showing here; see the next section on that).

Turning to the other TFTP packet types, it is straight-forward to add
events for them as well. The following is our complete tftp.evt
file:

Note: When line number changes in this file, update the documentation that pulls it in.

protocol analyzer spicy::TFTP over UDP:
 parse with TFTP::Packet,
 port 69/udp;

import TFTP;

on TFTP::Request if (is_read) -> event tftp::read_request($conn, $is_orig, self.filename, self.mode);
on TFTP::Request if (! is_read) -> event tftp::write_request($conn, $is_orig, self.filename, self.mode);

on TFTP::Data -> event tftp::data($conn, $is_orig, self.num, self.data);
on TFTP::Acknowledgement -> event tftp::ack($conn, $is_orig, self.num);
on TFTP::Error -> event tftp::error($conn, $is_orig, self.code, self.msg);

4.2.4. Detour: Zeek vs. TFTP

We noticed above that Zeek seems to be seeing only a single TFTP
packet from our input trace, even though tcpdump shows that the
pcap file contains multiple different types of packets. The reason
becomes clear once we look more closely at the UDP ports that are in
use:

tcpdump -ttnr tftp_rrq.pcap
1367411051.972852 IP 192.168.0.253.50618 > 192.168.0.10.69: 20 RRQ "rfc1350.txtoctet" [tftp]
1367411052.077243 IP 192.168.0.10.3445 > 192.168.0.253.50618: UDP, length 516
1367411052.081790 IP 192.168.0.253.50618 > 192.168.0.10.3445: UDP, length 4
1367411052.086300 IP 192.168.0.10.3445 > 192.168.0.253.50618: UDP, length 516
1367411052.088961 IP 192.168.0.253.50618 > 192.168.0.10.3445: UDP, length 4
1367411052.088995 IP 192.168.0.10.3445 > 192.168.0.253.50618: UDP, length 516
[...]

Turns out that only the first packet is using the well-known TFTP port
69/udp, whereas all the subsequent packets use ephemeral ports. Due to
the port difference, Zeek believes it is seeing two independent
network connections, and it does not associate TFTP with the second
one at all due to its lack of the well-known port (neither does
tcpdump!). Zeek’s connection log confirms this by showing two
separate entries:

cat conn.log
1367411051.972852 CH3xFz3U1nYI1Dp1Dk 192.168.0.253 50618 192.168.0.10 69 udp spicy_tftp - - - S0 - - 0 D 1 48 0 0 -
1367411052.077243 CfwsLw2TaTIeo3gE9g 192.168.0.10 3445 192.168.0.253 50618 udp - 0.181558 24795 196 SF - - 0 Dd 49 26167 49 1568 -

Switching the ports for subsequent packets is a quirk in TFTP that
resembles similar behaviour in standard FTP, where data connections
get set up separately as well. Fortunately, Zeek provides a built-in
function to designate a specific analyzer for an anticipated future
connection. We can call that function when we see the initial request:

function schedule_tftp_analyzer(id: conn_id)
	{
	# Schedule the TFTP analyzer for the expected next packet coming in on different
 # ports. We know that it will be exchanged between same IPs and reuse the
 # originator's port. "Spicy_TFTP" is the Zeek-side name of the TFTP analyzer
 # (generated from "Spicy::TFTP" in tftp.evt).
	Analyzer::schedule_analyzer(id$resp_h, id$orig_h, id$orig_p, Analyzer::get_tag("Spicy_TFTP"), 1min);
	}

event tftp::read_request(c: connection, is_orig: bool, filename: string, mode: string)
	{
	print "TFTP read request", c$id, filename, mode;
	schedule_tftp_analyzer(c$id);
	}

event tftp::write_request(c: connection, is_orig: bool, filename: string, mode: string)
	{
	print "TFTP write request", c$id, filename, mode;
	schedule_tftp_analyzer(c$id);
	}

Add handlers for other packet types so that we see their events being generated.
event tftp::data(c: connection, is_orig: bool, block_num: count, data: string)
	{
	print "TFTP data", block_num, data;
	}

event tftp::ack(c: connection, is_orig: bool, block_num: count)
	{
	print "TFTP ack", block_num;
	}

event tftp::error(c: connection, is_orig: bool, code: count, msg: string)
	{
	print "TFTP error", code, msg;
	}

spicyz -o tftp.hlto tftp.spicy zeek_tftp.spicy tftp.evt
zeek -r tftp_rrq.pcap tftp.hlto tftp.zeek
TFTP read request, [orig_h=192.168.0.253, orig_p=50618/udp, resp_h=192.168.0.10, resp_p=69/udp], rfc1350.txt, octet
TFTP data, 1, \x0a\x0a\x0a\x0a\x0a\x0aNetwork Working Group [...]
TFTP ack, 1
TFTP data, 2, B Official Protocol\x0a Standards" for the [...]
TFTP ack, 2
TFTP data, 3, protocol was originally designed by Noel Chia [...]
TFTP ack, 3
TFTP data, 4, r mechanism was suggested by\x0a PARC's EFT [...]
TFTP ack, 4
[...]

Now we are seeing all the packets as we would expect.

4.2.5. Zeek Script

Analyzers normally come along with a Zeek-side script that implements
a set of standard base functionality, such as recording activity into
a protocol specific log file. These scripts provide handlers for the
analyzers’ events, and collect and correlate their activity as
desired. We have created such a script for TFTP, based on the events that our Spicy analyzer
generates. Once we add that to the Zeek command line, we will see a
new tftp.log:

spicyz -o tftp.hlto tftp.spicy zeek_tftp.spicy tftp.evt
zeek -r tftp_rrq.pcap tftp.hlto tftp.zeek
cat tftp.log
#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p wrq fname mode uid_data size block_sent block_acked error_code error_msg
1367411051.972852 CKWH8L3AIekSHYzBU 192.168.0.253 50618 192.168.0.10 69 F rfc1350.txt octet ClAr3P158Ei77Fql8h 24599 49 49 - -

The TFTP script also labels the second session as TFTP data by
adding a corresponding entry to the service field inside the
Zeek-side connection record. With that, we are now seeing this in
conn.log:

1367411051.972852 ChbSfq3QWKuNirt9Uh 192.168.0.253 50618 192.168.0.10 69 udp spicy_tftp - - - S0 - -0 D 1 48 0 0 -
1367411052.077243 CowFQj20FHHduhHSYk 192.168.0.10 3445 192.168.0.253 50618 udp spicy_tftp_data 0.181558 24795 196 SF -- 0 Dd 49 26167 49 1568 -

The TFTP script ends up being a bit more complex than one would expect
for such a simple protocol. That’s because it tracks the two related
connections (initial request and follow-up traffic on a different
port), and combines them into a single TFTP transaction for logging.
Since there is nothing Spicy-specific in that Zeek script, we skip
discussing it here in more detail.

4.3. Next Steps

This tutorial provides an introduction to the Spicy language and
toolchain. Spicy’s capabilities go much further than what we could
show here. Some pointers for what to look at next:

	Programming in Spicy provides an in-depth discussion of the Spicy
language, including in particular all the constructs for
parsing data and a reference of language
elements. Note that most of Spicy’s types come with operators and methods for operating on values.
The Debugging section helps understanding Spicy’s operation
if results do not match what you would expect.

	Examples summarizes grammars coming with the
Spicy distribution.

	Zeek Integration discusses Spicy’s integration into Zeek.

5. Programming in Spicy

This chapter summarizes the main concepts of writing Spicy grammars. We
begin with a deep-dive on Spicy’s main task, parsing: We walk through
all the corresponding constructs & mechanisms available to grammar
writers, without paying too much attention to other specifics of the
Spicy language, such as data types and control flow constructs. Much
of that should be sufficiently intuitive to readers familiar with
standard scripting languages. However, once we finish the parsing
section, we follow up with a comprehensive overview of the Spicy
language, as well as a reference of pre-built library functionality
that Spicy grammars can leverage.

	5.1. Parsing
	5.1.1. Basics

	5.1.2. Unit Hooks

	5.1.3. Unit Variables

	5.1.4. Unit Parameters

	5.1.5. Unit Attributes

	5.1.6. Meta data

	5.1.7. Parsing Types

	5.1.8. Controlling Parsing

	5.1.9. Changing Input

	5.1.10. Filters

	5.1.11. Sinks

	5.1.12. Contexts

	5.1.13. Error Recovery

	5.2. Language
	5.2.1. Identifiers

	5.2.2. Modules

	5.2.3. Functions

	5.2.4. Variables and Constants

	5.2.5. Types

	5.2.6. Statements

	5.2.7. Error Handling

	5.2.8. Conditional Compilation

	5.2.9. Appendix

	5.3. Library
	5.3.1. Module spicy

	5.3.2. Module filter

	5.4. Examples

	5.5. Debugging
	5.5.1. Debug Hooks

	5.5.2. Debug Streams

	5.5.3. Exceptions

	5.5.4. Inspecting Generated Code

	5.5.5. Skipping validation

5.1. Parsing

5.1.1. Basics

5.1.1.1. Type Declaration

Spicy expresses units of data to parse through a type called,
appropriately, unit. At a high level, a unit is similar to structs
or records in other languages: It defines an ordered set of fields,
each with a name and a type, that during runtime will store
corresponding values. Units can be instantiated, fields can be
assigned values, and these values can then be retrieved. Here’s about
the most basic Spicy unit one can define:

type Foo = unit {
 version: uint32;
};

We name the type Foo, and it has just one field called
version, which stores a 32-bit unsigned integer type.

Leaving parsing aside for a moment, we can indeed use this type
similar to a typical struct/record type:

module Test;

type Foo = unit {
 version: uint32;
};

global f: Foo;
f.version = 42;
print f;

This will print:

[$version=42]

Fields are initially unset, and attempting to read an unset field will
trigger a runtime exception. You may, however,
provide a default value by adding a &default attribute to the
field, in which case that will be returned on access if no value has
been explicitly assigned:

module Test;

type Foo = unit {
 version: uint32 &default=42;
};

global f: Foo;
print f;
print "version is %s" % f.version;

This will print:

[$version=(not set)]
version is 42

Note how the field remains unset even with the default now specified,
while the access returns the expected value.

5.1.1.2. Parsing a Field

We can turn this minimal unit type into a starting point for parsing
data—in this case a 32-bit integer from four bytes of raw input.
First, we need to declare the unit as public to make it accessible
from outside of the current module—a requirement if a host
application wants to use the unit as a parsing entry point.

module Test;

public type Foo = unit {
 version: uint32;

 on %done {
 print "0x%x" % self.version;
 }
};

Let’s use spicy-driver to parse 4 bytes of input through this
unit:

printf '\01\02\03\04' | spicy-driver foo.spicy
0x1020304

The output comes of course from the print statement inside the
%done hook, which executes once the unit has been fully parsed.
(We will discuss unit hooks further below.)

By default, Spicy assumes integers that it parses to be represented in
network byte order (i.e., big-endian), hence the output above.
Alternatively, we can tell the parser through an attribute that our
input is arriving in, say, little-endian instead. To do that, we
import the spicy library module, which provides an enum type
spicy::ByteOrder that we can give to a &byte-order field
attribute for fields that support it:

module Test;

import spicy;

public type Foo = unit {
 version: uint32 &byte-order=spicy::ByteOrder::Little;

 on %done {
 print "0x%x" % self.version;
 }
};

printf '\01\02\03\04' | spicy-driver foo.spicy
0x4030201

We see that unpacking the value has now flipped the bytes before
storing it in the version field.

Similar to &byte-order, Spicy offers a variety of further
attributes that control the specifics of how fields are parsed. We’ll
discuss them in the relevant sections throughout the rest of this
chapter.

5.1.1.3. Non-type Fields

Unit fields always have a type. However, in some cases a field’s type
is not explicitly declared, but derived from what’s being parsed. The
main example of this is parsing a constant value: Instead of a type, a
field can specify a constant of a parseable type. The field’s type
will then (usually) just correspond to the constant’s type, and
parsing will expect to find the corresponding value in the input
stream. If a different value gets unpacked instead, parsing will abort
with an error. Example:

module Test;

public type Foo = unit {
 bar: b"bar";
 on %done { print self.bar; }
};

printf 'bar' | spicy-driver foo.spicy
bar

printf 'foo' | spicy-driver foo.spicy
[fatal error] terminating with uncaught exception of type spicy::rt::ParseError: parse error: expecting 'bar' (foo.spicy:5)

Regular expressions extend this scheme a bit
further: If a field specifies a regular expression constant rather
than a type, the field will have type Bytes and store
the data that ends up matching the regular expression:

module Test;

public type Foo = unit {
 x: /Foo.*Bar/;
 on %done { print self; }
};

printf 'Foo12345Bar' | spicy-driver foo.spicy
[$x=b"Foo12345Bar"]

There’s also a programmatic way to change a field’s type to something
that’s different than what’s being parsed, see the
&convert attribute.

5.1.1.3.1. Parsing Fields With Known Size

You can limit the input that a field receives by attaching a
&size=EXPR attribute that specifies the number of raw bytes to
make available. This works on top of any other attributes that control
the field’s parsing. From the field’s perspective, such a size limit
acts just like reaching the end of the input stream at the specified
position. Example:

module Test;

public type Foo = unit {
 x: int16[] &size=6;
 y: bytes &eod;
 on %done { print self; }
};

printf '\000\001\000\002\000\003xyz' | spicy-driver foo.spicy
[$x=[1, 2, 3], $y=b"xyz"]

As you can see, x receives 6 bytes of input, which it then turns
into three 16-bit integers.

Normally, the field must consume all the bytes specified by &size,
otherwise a parse error will be triggered. Some types support an
additional &eod attribute to lift this restrictions; we discuss
that in the corresponding type’s section where applicable.

After a field with a &size=EXPR attribute, parsing will always
move ahead the full amount of bytes, even if the field did not consume
them all.

Todo

Parsing a regular expression would make a nice example for
&size as well.

5.1.1.3.2. Defensively Limiting Input Size

On their own, parsers place no intrinsic upper limit on the size of
variable-size fields or units. This can have negative effects like
out-of-memory errors, e.g., when available memory is constrained, or for
malformed input.

As a defensive mechanism you can put an upper limit on the data a field or unit
receives by attaching a &max-size=EXPR attribute where EXPR is an
unsigned integer specifying the upper limit of number of raw bytes a field or
unit should receive. If more than &max-size bytes are consumed during
parsing, an error will be triggered. This attribute works on top of any other
attributes that control parsing. Example:

module Test;

public type Foo = unit {
 x: bytes &until=b"\x00" &max-size=1024;
 on %done { print self; }
};

printf '\001\002\003\004\005\000' | spicy-driver foo.spicy
[$x=b"\x01\x02\x03\x04\x05"]

Here x will parse a NULL-terminated byte sequence (excluding the
terminating NULL), but never more than 1024 bytes.

&max-size cannot be combined with &size.

5.1.1.4. Anonymous Fields

Field names are optional. If skipped, the field becomes an anonymous
field. These still participate in parsing as any other field, but they
won’t store any value, nor is there a way to get access to them from
outside. You can however still get to the parsed value inside a
corresponding field hook (see Unit Hooks) using the reserved
$$ identifier (see Reserved Identifiers).

module Test;

public type Foo = unit {
 x: int8;
 : int8 { print $$; } # anonymous field
 y: int8;
 on %done { print self; }
};

printf '\01\02\03' | spicy-driver foo.spicy
2
[$x=1, $y=3]

5.1.1.5. Reserved Identifiers

Inside units, two reserved identifiers provide access to values
currently being parsed:

	self
	Inside a unit’s type definition, self refers to the unit
instance that’s currently being processed. The instance is
writable and maybe modified by assigning to any fields of
self.

	$$
	Inside field attributes and hooks, $$ refers to the just
parsed value, even if it’s not going to be directly stored in the
field. The value of $$ is writable and may be modified.

5.1.1.6. On-the-fly Type Conversion with &convert

Fields may use an attribute &convert=EXPR to transform the value
that was just being parsed before storing it as the field’s final
value. With the attribute being present, it’s the value of EXPR
that’s stored in the field, not the parsed value. Accordingly, the
field’s type also changes to the type of EXPR.

Typically, EXPR will use $$ to access the value actually being
parsed and then transform it into the desired representation. For
example, the following stores an integer parsed in an ASCII
representation as a uint64:

module Test;

import spicy;

public type Foo = unit {
 x: bytes &eod &convert=$$.to_uint();
 on %done { print self; }
};

printf 12345 | spicy-driver foo.spicy
[$x=12345]

&convert also works at the unit level to transform a whole
instance into a different value after it has been parsed:

module Test;

type Data = unit {
 data: bytes &size=2;
} &convert=self.data.to_int();

public type Foo = unit {
 numbers: Data[];

 on %done { print self.numbers; }
};

printf 12345678 | spicy-driver foo.spicy
[12, 34, 56, 78]

Note how the Data instances have been turned into integers.
Without the &convert attribute, the output would have looked like
this:

[[$data=b"12"], [$data=b"34"], [$data=b"56"], [$data=b"78"]]

5.1.1.7. Enforcing Parsing Constraints

Fields may use an attribute &requires=EXPR to enforce additional
constraints on their values. EXPR must be a boolean expression
that will be evaluated after the parsing for the field has finished,
but before any hooks execute. If EXPR returns False, the
parsing process will abort with an error, just as if the field had
been unparsable in the first place (incl. executing any %error hooks). EXPR has access to the parsed value through
$$. It may also retrieve the field’s final
value through self.<field>, which can be helpful when
&convert is present.

Example:

module Test;

import spicy;

public type Foo = unit {
 x: int8 &requires=($$ < 5);
 on %done { print self; }
};

printf '\001' | spicy-driver foo.spicy
[$x=1]

printf '\010' | spicy-driver foo.spicy
[fatal error] terminating with uncaught exception of type spicy::rt::ParseError: parse error: &required failed ($$ == 8) (foo.spicy:7:13)

One can also enforce conditions globally at the unit level through a attribute
&requires = EXPR. EXPR will be evaluated once the unit has been fully
parsed, but before any %done hook executes. If EXPR returns False,
the unit’s parsing process will abort with an error. As usual, EXPR has
access to the parsed instance through self. More than one &requires
attribute may be specified.

Example:

module Test;

import spicy;

public type Foo = unit {
 x: int8;
 on %done { print self; }
} &requires = self.x < 5;

printf '\001' | spicy-driver foo.spicy
[$x=1]

printf '\010' | spicy-driver foo.spicy
[error] terminating with uncaught exception of type spicy::rt::ParseError: parse error: &requires failed (foo.spicy:9:15)

5.1.2. Unit Hooks

Unit hooks provide one of the most powerful Spicy tools to control
parsing, track state, and retrieve results. Generally, hooks are
blocks of code triggered to execute at certain points during parsing,
with access to the current unit instance.

Conceptually, unit hooks are somewhat similar to methods: They have
bodies that execute when triggered, and these bodies may receive a set
of parameters as input. Different from functions, however, a hook can
have more than one body. If multiple implementations are provided for
the same hook, all of them will execute successively. A hook may also
not have any body implemented at all, in which case there’s nothing to
do when it executes.

The most commonly used hooks are:

	on %init() { ... }
	Executes just before unit parsing will start.

	on %done { ... }
	Executes just after unit parsing has completed successfully.

	on %error { ... }
	Executes when a parse error has been encountered, just before the
parser either aborts processing.

	on %finally { ... }
	Executes once unit parsing has completed in any way. This hook is
most useful to modify global state that needs to be updated no
matter the success of the parsing process. Once %init triggers, this
hook is guaranteed to eventually execute as well. It will run
after either %done or %error, respectively. (If a new
error occurs during execution of %finally, that will not
trigger the unit’s %error hook.)

	on %print { ... }
	Executes when a unit is about to be printed (and more generally:
when rendered into a string representation). By default, printing
a unit will produce a list of its fields with their current
values. Through this hook, a unit can customize its appearance by
returning the desired string.

	on <field name> { ... } (field hook)
	Executes just after the given unit field has been parsed. The
parsed value is accessible through the $$, potentially with
any relevant type conversion applied (see
On-the-fly Type Conversion with &convert). The same will also have been assigned
to the field already.

	on <field name> foreach { ... } (container hook)
	Assuming the specified field is a container (e.g., a vector), this
executes each time a new container element has been parsed, and
just before it’s been added to the container. The parsed element
is accessible through the $$ identifier, and can be modified
before it’s stored. The hook implementation may also use the
stop statement to abort container parsing,
without the current element being added anymore.

In addition, Spicy provides a set of hooks specific to the sink type which
are discussed in the section on sinks, and hooks which are
executed during error recovery.

There are three locations where hooks can be implemented:

	Inside a unit, on <hook name> { ... } implements the hook of the
given name:

type Foo = unit {
 x: uint32;
 v: uint8[];

 on %init { ... }
 on x { ... }
 on v foreach { ... }
 on %done { ... }
}

	Field and container hooks may be directly attached to their field,
skipping the on ... part:

type Foo = unit {
 x: uint32 { ... }
 v: uint8[] foreach { ... }
}

	At the global module level, one can add hooks to any available unit
type through on <unit type>::<hook name> { ... }. With the
definition of Foo above, this implements hooks externally:

on Foo::%init { ... }
on Foo::x { ... }
on Foo::v foreach { ... }
on Foo::%done { ... }

External hooks work across module boundaries by qualifying the unit
type accordingly. They provide a powerful mechanism to extend a
predefined unit without changing any of its code.

If multiple implementations are provided for the same hook, by default
it remains undefined in which order they will execute. If a particular
order is desired, you can specify priorities for your hook
implementations:

on Foo::v priority=5 { ... }
on Foo::v priority=-5 { ... }

Implementations then execute in order of their priorities: The higher a
priority value, the earlier it will execute. If not specified, a
hook’s priority is implicitly taken as zero.

Note

When a hook executes, it has access to the current unit instance
through the self identifier. The state of that instance will
reflect where parsing is at that time. In particular, any field
that hasn’t been parsed yet, will remain unset. You can use the
?. unit operator to test if a field has received a value yet.

5.1.3. Unit Variables

In addition to unit field for parsing, you can also add further instance
variables to a unit type to store arbitrary state:

module Test;

public type Foo = unit {
 on %init { print self; }
 x: int8 { self.a = "Our integer is %d" % $$; }
 on %done { print self; }

 var a: string;
};

printf \05 | spicy-driver foo.spicy
[$x=(not set), $a=""]
[$x=48, $a="Our integer is 48"]

Here, we assign a string value to a once we have parsed x. The
final print shows the expected value. As you can also see, before
we assign anything, the variable’s value is just empty: Spicy
initializes unit variables with well-defined defaults. If you
would rather leave a variable unset by default, you can add
&optional:

module Test;

public type Foo = unit {
 on %init { print self; }
 x: int8 { self.a = "Our integer is %d" % $$; }
 on %done { print self; }

 var a: string &optional;
};

printf \05 | spicy-driver foo.spicy
[$x=(not set), $a=(not set)]
[$x=48, $a="Our integer is 48"]

You can use the ?. unit operator to test if an optional unit
variable remains unset.

Unit variables can also be initialized with custom expressions when being
defined. The initialization is performed just before the containing unit starts
parsing (implying that the expressions cannot access parse results
of the unit itself yet)

module Test;

public type Foo = unit {
 x: int8;
 var a: int8 = 123;
 on %done { print self; }
};

printf \05 | spicy-driver foo.spicy
[$x=48, $a=123]

5.1.4. Unit Parameters

Unit types can receive parameters upon instantiation, which will then be
available to any code inside the type’s declaration:

module Test;

type Bar = unit(msg: string, mult: int8) {
 x: int8 &convert=($$ * mult);
 on %done { print "%s: %d" % (msg, self.x); }
};

public type Foo = unit {
 y: Bar("My multiplied integer", 5);
};

printf '\05' | spicy-driver foo.spicy
My multiplied integer: 25

This example shows a typical idiom: We’re handing parameters down to a
subunit through parameters it receives. Inside the submodule, we then
have access to the values passed in.

Note

It’s usually not very useful to define a top-level parsing
unit with parameters because we don’t have a way to pass anything
in through spicy-driver. A custom host application could make
use of them, though.

This works with subunits inside containers as well:

module Test;

type Bar = unit(mult: int8) {
 x: int8 &convert=($$ * mult);
 on %done { print self.x; }
};

public type Foo = unit {
 x: int8;
 y: Bar(self.x)[];
};

printf '\05\01\02\03' | spicy-driver foo.spicy
5
10
15

Unit parameters follow the same passing conventions as function
parameters. In particular, they are read-only by default.
If the subunit wants to modify a parameter it receives, it needs
to be declared as inout (e.g., Bar(inout foo: Foo)

Note

inout parameters need to be reference types which holds for other units
types, but currently not for basic types (#674 [https://github.com/zeek/spicy/issues/674]). In order to pass a
basic type as unit parameter it needs to be declared as a reference (e.g.,
string&) and explicitly wrapped when being set:

module Test;

type X = unit(inout msg: string&) {
 n : uint8 {
 local s = "Parsed %d" % $$;
 msg = new s;
 }
};

global msg = new "Nothing parsed, yet";

public type Y = unit {
 x: X(msg);
 on %done { print msg; }
};

printf '\x2a' | spicy-driver foo.spicy
Parsed 42

Note

A common use-case for unit parameters is passing the self of a
higher-level unit down into a subunit:

type Foo = unit {
 ...
 b: Bar(self);
 ...
}

type Bar = unit(foo: Foo) {
 # We now have access to any state in "foo".
}

That way, the subunit can for example store state directly in the
parent.

5.1.5. Unit Attributes

Unit types support the following type attributes:

	&byte-order=ORDER
	Specifies a byte order to use for parsing the unit where ORDER is of
type spicy::ByteOrder. This overrides the byte order specified for the
module. Individual fields can override this value by specifying their own
byte-order. Example:

type Foo = unit {
 version: uint32;
} &byte-order=spicy::ByteOrder::Little;

	&convert=EXPR
	Replaces a unit instance with the result of the expression
EXPR after parsing it from inside a parent unit. See
On-the-fly Type Conversion with &convert for an example. EXPR has access to
self to retrieves state from the unit.

	&requires=EXPR
	
Enforces post-conditions on the parsed unit. EXPR must be a boolean
expression that will be evaluated after the parsing for the unit has
finished, but before any hooks execute. More than one &requires
attributes may be specified. Example:

type Foo = unit {
 a: int8;
 b: int8;
} &requires=self.a==self.b;

See the section on parsing constraints for more
details.

	&size=N
	Limits the unit’s input to N bytes, which it must fully
consume. Example:

type Foo = unit {
 a: int8;
 b: bytes &eod;
} &size=5;

This expects 5 bytes of input when parsing an instance of Foo.
The unit will store the first byte into a, and then fill b
with the remaining 4 bytes.

The expression N has access to self as well as to the
unit’s parameters.

5.1.6. Meta data

Units can provide meta data about their semantics through properties
that both Spicy itself and host applications can access. One defines
properties inside the unit’s type through either a %<property> =
<value>; tuple, or just as %<property>; if the property does not
take an argument. Currently, units support the following meta data
properties:

	%mime-type = STRING
	A string of the form "<type>/<subtype>" that defines the MIME
type for content the unit knows how to parse. This may include a
* wildcard for either the type or subtype. We use a
generalized notion of MIME types here that can include custom
meanings. See Sinks for more on how these MIME types are
used to select parsers dynamically during runtime.

You can specify this property more than once to associate a unit
with multiple types.

	%description = STRING
	A short textual description of the unit type (i.e., the parser
that it defines). Host applications have access to this property,
and spicy-driver includes the information into the list of
available parsers that it prints with the --list-parsers
option.

	%port = PORT_VALUE [&originator|&responder]
	A Port to associate this unit with, optionally
including a direction to limit its use to the corresponding side.
This property has no built-in effect, but host applications may
make use of the information to decide which unit type to use for
parsing a connection’s payload.

	%skip = (REGEXP | Null);
	Specifies a pattern which should be skipped when encountered in the input
stream in between parsing of unit fields. This overwrites a value set at
the module level; use Null to reset the property, i.e., not skip
anything.

	%skip-pre = (REGEXP | Null);
	Specifies a pattern which should be skipped when encountered in the input
stream before parsing of a unit begins. This overwrites a value set at the
module level; use Null to reset the property, i.e., not skip anything.

	%skip-post = (REGEXP | Null);
	Specifies a pattern which should be skipped when encountered in the input
stream after parsing of a unit has finished. This overwrites a value set at
the module level; use Null to reset the property, i.e., not skip
anything.

Units support some further properties for other purposes, which we
introduce in the corresponding sections.

5.1.7. Parsing Types

Several, but not all, of Spicy’s data types can be
parsed from binary data. In the following we summarize the types that
can, along with any options they support to control specifics of how
they unpack binary representations.

5.1.7.1. Address

Spicy parses addresses from either 4 bytes of
input for IPv4 addresses, or 16 bytes for IPv6 addresses. To select
the type, a unit field of type addr must come with either an
&ipv4 or &ipv6 attribute.

By default, addresses are assumed to be represented in network byte
order. Alternatively, a different byte order can be specified through
a &byte-order attribute specifying the desired
spicy::ByteOrder.

Example:

module Test;

import spicy;

public type Foo = unit {
 ip: addr &ipv6 &byte-order=spicy::ByteOrder::Little;
 on %done { print self; }
};

printf '1234567890123456' | spicy-driver foo.spicy
[$ip=3635:3433:3231:3039:3837:3635:3433:3231]

5.1.7.2. Bitfield

Bitfields parse an integer value of a given size, and then make
selected smaller bit ranges within that value available individually
through dedicated identifiers. For example, the following unit parses
4 bytes as an uint32 and then makes the value of bit 0 available
as f.x1, bits 1 to 2 as f.x2, and bits 3 to 5 as f.x3,
respectively:

module Test;

public type Foo = unit {
 f: bitfield(32) {
 x1: 0;
 x2: 1..2;
 x3: 3..4;
 };

 on %done {
 print self.f.x1, self.f.x2, self.f.x3;
 print self;
 }
};

printf '\01\02\03\04' | spicy-driver foo.spicy
0, 2, 0
[$f=(0, 2, 0)]

Generally, a field bitfield(N) field is parsed like an
uint<N>. The field then supports dereferencing individual bit
ranges through their labels. The corresponding expressions
(self.x.<id>) have the same uint<N> type as the parsed value
itself, with the value shifted to the right so that the lowest
extracted bit becomes bit 0 of the returned value. As you can see in
the example, the type of the field itself becomes a tuple composed of
the values of the individual bit ranges.

By default, a bitfield assumes the underlying integer comes in network
byte order. You can specify a &byte-order attribute to change that
(e.g., bitfield(32) { ... } &byte-order=spicy::ByteOrder::Little).
Furthermore, each bit range can also specify a &bit-order
attribute to specify the ordering for its
bits; the default is spicy::BitOrder::LSB0.

The individual bit ranges support the &convert attribute and will
adjust their types accordingly, just like a regular unit field (see
On-the-fly Type Conversion with &convert). For example, that allows for mapping a bit
range to an enum, using $$ to access the parsed value:

module Test;

import spicy;

type X = enum { A = 1, B = 2 };

public type Foo = unit {
 f: bitfield(8) {
 x1: 0..3 &convert=X($$);
 x2: 4..7 &convert=X($$);
 } { print self.f.x1, self.f.x2; }
};

printf '\41' | spicy-driver foo.spicy
X::A, X::B

5.1.7.3. Bytes

When parsing a field of type Bytes, Spicy will consume raw
input bytes according to a specified attribute that determines when to
stop. The following attributes are supported:

	&eod
	Consumes all subsequent data until the end of the input is reached.

	&size=N
	Consumes exactly N bytes. The attribute may be combined with
&eod to consume up to N bytes instead (i.e., permit
running out of input before the size limit is reached).

(This attribute works for fields of all types. We list it here because it’s particularly
common to use it with bytes.)

	&until=DELIM
	Consumes bytes until the specified delimiter is found. DELIM
must be of type bytes itself. The delimiter will not be
included into the resulting value.

	&until-including=DELIM
	Similar to &until, but this does include the delimiter
DELIM into the resulting value.

One of these attributes must be provided.

On top of that, bytes fields support the attribute &chunked to
change how the parsed data is processed and stored. Normally, a bytes
field will first accumulate all desired data and then store the final,
complete value in the field. With &chunked, if the data arrives
incrementally in pieces, the field instead processes just whatever is
available at a time, storing each piece directly, and individually, in
the field. Each time a piece gets stored, any associated field hooks
execute with the new part as their $$. Parsing with &chunked
will eventually still consume the same number of bytes overall, but it
avoids buffering everything in cases where that’s either infeasible or
simply not not needed.

Bytes fields support parsing constants: If a bytes constant is
specified instead of a field type, parsing will expect to find the
corresponding value in the input stream.

5.1.7.4. Integer

Fields of integer type can be either signed
(intN) or unsigned (uintN). In either case, the bit length
N determines the number of bytes being parsed. By default,
integers are expected to come in network byte order. You can specify a
different order through the &byte-order=ORDER attribute, where
ORDER is of type spicy::ByteOrder.

Integer fields support parsing constants: If an integer constant is
specified instead the instead of a field type, parsing will expect to
find the corresponding value in the input stream. Since the exact type
of the integer constant is important, you should use their constructor
syntax to make that explicit (e.g., uint32(42), int8(-1); vs.
using just 42 or -1).

5.1.7.5. Real

Real values are parsed as either single or double precision values in
IEEE754 format, depending on the value of their &type=T attribute,
where T is one of spicy::RealType.

5.1.7.6. Regular Expression

When parsing a field through a Regular Expression, the expression is
expected to match at the current position of the input stream. The
field’s type becomes bytes, and it will store the matching data.

Inside hooks for fields with regular expressions, you can access
capture groups through $1, $2, $3, etc. For example:

x : /(a.c)(de*f)(h.j)/ {
 print $1, $2, $3;
 }

This will print out the relevant pieces of the data matching the
corresponding set of parentheses. (There’s no $0, just use $$
as normal to get the full match.)

Matching an regular expression is more expensive if you need it to
capture groups. If are using groups inside your expression but don’t
need the actual captures, add &nosub to the field to remove that
overhead.

5.1.7.7. Unit

Fields can have the type of another unit, in which case parsing will
descend into that subunit’s grammar until that instance has been fully
parsed. Field initialization and hooks work as usual.

If the subunit receives parameters, they must be given right after the
type.

module Test;

type Bar = unit(a: string) {
 x: uint8 { print "%s: %u" % (a, self.x); }
};

public type Foo = unit {
 y: Bar("Spicy");
 on %done { print self; }
};

printf '\01\02' | spicy-driver foo.spicy
Spicy: 1
[$y=[$x=1]]

See Unit Parameters for more.

5.1.7.8. Vector

Parsing a vector creates a loop that repeatedly
parses elements of the specified type from the input stream until an
end condition is reached. The field’s value accumulates all the
elements into the final vector.

Spicy uses a specific syntax to define fields of type vector:

NAME : ELEM_TYPE[SIZE]

NAME is the field name as usual. ELEM_TYPE is type of the
vector’s elements, i.e., the type that will be repeatedly parsed.
SIZE is the number of elements to parse into the vector; this is
an arbitrary Spicy expression yielding an integer value. The resulting
field type then will be vector<ELEM_TYPE>. Here’s a simple example
parsing five uint8:

module Test;

public type Foo = unit {
 x: uint8[5];
 on %done { print self; }
};

printf '\01\02\03\04\05' | spicy-driver foo.spicy
[$x=[1, 2, 3, 4, 5]]

It is possible to skip the SIZE (e.g., x: uint8[]) and instead
use another kind of end conditions to terminate a vector’s parsing
loop. To that end, vectors support the following attributes:

	&eod
	Parses elements until the end of the input stream is reached.

	&size=N
	Parses the vector from the subsequent N bytes of input data.
This effectively limits the available input to the corresponding
window, letting the vector parse elements until it runs out of
data. (This attribute works for fields of all types. We list it here because it’s particularly
common to use it with vectors.)

	&until=EXPR
	Vector elements are parsed in a loop with EXPR being evaluated
as a boolean expression after each parsed element, and before
adding the element to the vector. Once EXPR evaluates to true,
parsing stops without adding the element that was just
parsed.

	&until-including=EXPR
	Similar to &until, but does include the final element EXPR
into the field’s vector when stopping parsing.

	&while=EXPR
	Continues parsing as long as the boolean expression EXPR
evaluates to true.

If neither a size nor an attribute is given, Spicy will attempt to use
look-ahead parsing to determine the end of
the vector based on the next expected token. Depending on the unit’s
field, this may not be possible, in which case Spicy will decline to
compile the unit.

The syntax shown above generally works for all element types,
including subunits (e.g., x: MyUnit[]).

Note

The x: (<T>)[] syntax is quite flexible. In fact, <T> is
not limited to subunits, but allows for any standard field
specification defining how to parse the vector elements. For
example, x: (bytes &size=5)[]; parses a vector of 5-character
bytes instances.

When parsing a vector, Spicy supports using a special kind of field
hook, foreach, that executes for each parsed element individually.
Inside that hook, $$ refers to the just parsed element:

module Test;

public type Foo = unit {
 x: uint8[5] foreach { print $$, self.x; }
};

printf '\01\02\03\04\05' | spicy-driver foo.spicy
1, []
2, [1]
3, [1, 2]
4, [1, 2, 3]
5, [1, 2, 3, 4]

As you can see, when a foreach hook executes the element has not yet
been added to the vector. You may indeed use a stop statement
inside a foreach hook to abort the vector’s parsing without adding
the current element anymore. See Unit Hooks for more on hooks.

5.1.7.9. Void

The Void type can be used as a place-holder for not storing any
data. By default void fields do not consume any data, and while not very
useful for normal fields, this allows branches in switch
constructs to forego any parsing.

If a non-zero &size is specified, the given number of bytes of input data
are consumed. This allows skipping over data without storing their result:

module Test;

public type Foo = unit {
 : void &size=2;
 x: uint8;

 on %done { print self; }
};

printf '\01\02\03' | spicy-driver foo.spicy
[$x=3]

A void field can also terminate through an &until=<BYTES>
attribute: it then skips all input data until the given deliminator
sequence of bytes is encountered. The deliminator is extracted from
the stream before parsing continues.

Finally, a void field can specify &eod to consume all data
until the end of the current input.

void fields cannot have names.

5.1.8. Controlling Parsing

Spicy offers a few additional constructs inside a unit’s declaration
for steering the parsing process. We discuss them in the following.

5.1.8.1. Conditional Parsing

A unit field may be conditionally skipped for parsing by adding an
if (COND) clause, where COND is a boolean expression. The
field will be only parsed if the expression evaluates to true at the
time the field is next in line.

module Test;

public type Foo = unit {
 a: int8;
 b: int8 if (self.a == 1);
 c: int8 if (self.a % 2 == 0);
 d: int8;

 on %done { print self; }
};

printf '\01\02\03\04' | spicy-driver foo.spicy
[$a=1, $b=2, $c=(not set), $d=3]

printf '\02\02\03\04' | spicy-driver foo.spicy
[$a=2, $b=(not set), $c=2, $d=3]

5.1.8.2. Look-Ahead

Internally, Spicy builds an LR(1) grammar for each unit that it
parses, meaning that it can actually look ahead in the parsing
stream to determine how to process the current input location. Roughly
speaking, if (1) the current construct does not have a clear end
condition defined (such as a specific length), and (2) a specific value
is expected to be found next; then the parser will keep looking for
that value and end the current construct once it finds it.

“Construct” deliberately remains a bit of a fuzzy term here, but think
of vector parsing as the most common instance of this: If you don’t
give a vector an explicit termination condition (as discussed in
Vector), Spicy will look at what’s expected to come
after the container. As long as that’s something clearly
recognizable (e.g., a specific value of an atomic type, or a match for
a regular expression), it’ll terminate the vector accordingly.

Here’s an example:

module Test;

public type Foo = unit {
 data: uint8[];
 : /EOD/;
 x : int8;

 on %done { print self; }
};

printf '\01\02\03EOD\04' | spicy-driver foo.spicy
[$data=[1, 2, 3], $x=4]

For vectors, Spicy attempts look-ahead parsing automatically as a last
resort when it doesn’t find more explicit instructions. However, it
will reject a unit if it can’t find a suitable look-ahead symbol to
work with. If we had written int32 in the example above, that
would not have worked as the parser can’t recognize when there’s a
int32 coming; it would need to be a concrete value, such as
int32(42).

See the switch construct for another instance of
look-ahead parsing.

5.1.8.3. switch

Spicy supports a switch construct as way to branch into one
of several parsing alternatives. There are two variants of this, an
explicit branch and one driving by look-ahead:

Branch by expression

The most basic form of switching by expression looks like this:

switch (EXPR) {
 VALUE_1 -> FIELD_1;
 VALUE_2 -> FIELD_2;
 ...
 VALUE_N -> FIELD_N;
};

This evaluates EXPR at the time parsing reaches the switch. If
there’s a VALUE matching the result, parsing continues with the
corresponding field, and then proceeds with whatever comes after the
switch. Example:

module Test;

public type Foo = unit {
 x: bytes &size=1;
 switch (self.x) {
 b"A" -> a8: int8;
 b"B" -> a16: int16;
 b"C" -> a32: int32;
 };

 on %done { print self; }
};

printf 'A\01' | spicy-driver foo.spicy
[$x=b"A", $a8=1, $a16=(not set), $a32=(not set)]

printf 'B\01\02' | spicy-driver foo.spicy
[$x=b"B", $a8=(not set), $a16=258, $a32=(not set)]

We see in the output that all of the alternatives turn into normal
unit members, with all but the one for the branch that was taken left
unset.

If none of the values match the expression, that’s considered a
parsing error and processing will abort. Alternative, one can add a
default alternative by using * as the value. The branch will then
be taken whenever no other value matches.

A couple additional notes about the fields inside an alternative:

	In our example, the fields of all alternatives all have
different names, and they all show up in the output. One can
also reuse names across alternatives as long as the types
exactly match. In that case, the unit will end up with only a
single instance of that member.

	An alternative can match against more than one value by
separating them with commas (e.g., b"A", b"B" -> x: int8;).

	Alternatives can have more than one field attached by enclosing
them in braces, i.e.,: VALUE -> { FIELD_1a; FIELD_1b; ...;
FIELD_1n; }.

	Sometimes one really just needs the branching capability, but
doesn’t have any field values to store. In that case an
anonymous void field may be helpful(e.g., b"A" -> : void
{ DoSomethingHere(); }.

Branch by look-ahead

switch also works without any expression as long as the presence
of all the alternatives can be reliably recognized by looking ahead in
the input stream:

module Test;

public type Foo = unit {
 switch {
 -> a: b"A";
 -> b: b"B";
 -> c: b"C";
 };

 on %done { print self; }
};

printf 'A' | spicy-driver foo.spicy
[$a=b"A", $b=(not set), $c=(not set)]

While this example is a bit contrived, the mechanism becomes powerful
once you have subunits that are recognizable by how they start:

module Test;

type A = unit {
 a: b"A";
};

type B = unit {
 b: uint16(0xffff);
};

public type Foo = unit {
 switch {
 -> a: A;
 -> b: B;
 };

 on %done { print self; }
};

printf 'A ' | spicy-driver foo.spicy
[$a=[$a=b"A"], $b=(not set)]

printf '\377\377' | spicy-driver foo.spicy
[$a=(not set), $b=[$b=65535]]

Switching Over Fields With Common Size

You can limit the input any field in a unit switch receives by attaching an
optional &size=EXPR attribute that specifies the number of raw bytes to
make available. This is analog to the field size attribute
and especially useful to remove duplication when each case is subject to the
same constraint.

module Test;

public type Foo = unit {
 tag: uint8;
 switch (self.tag) {
 1 -> b1: bytes &eod;
 2 -> b2: bytes &eod &convert=$$.lower();
 } &size=3;

 on %done { print self; }
};

printf '\01ABC' | spicy-driver foo.spicy
[$tag=1, $b1=b"ABC", $b2=(not set)]

printf '\02ABC' | spicy-driver foo.spicy
[$tag=2, $b1=(not set), $b2=b"abc"]

5.1.8.4. Backtracking

Spicy supports a simple form of manual backtracking. If a field is
marked with &try, a later call to the unit’s backtrack()
method anywhere down in the parse tree originating at that field will
immediately transfer control over to the field following the &try.
When doing so, the data position inside the input stream will be reset
to where it was when the &try field started its processing. Units
along the original path will be left in whatever state they were at
the time backtrack() executed (i.e., they will probably remain
just partially initialized). When backtrack() is called on a path
that involves multiple &try fields, control continues after the
most recent.

Example:

module Test;

public type test = unit {
 foo: Foo &try;
 bar: Bar;

 on %done { print self; }
};

type Foo = unit {
 a: int8 {
 if ($$!= 1)
 self.backtrack();
 }
 b: int8;
};

type Bar = unit {
 a: int8;
 b: int8;
};

printf '\001\002\003\004' | spicy-driver backtrack.spicy
[$foo=[$a=1, $b=2], $bar=[$a=3, $b=4]]

printf '\003\004' | spicy-driver backtrack.spicy
[$foo=[$a=3, $b=(not set)], $bar=[$a=3, $b=4]]

backtrack() can be called from inside %error hooks, so this provides a simple form of error recovery
as well.

Note

This mechanism is preliminary and will probably see refinement
over time, both in terms of more automated backtracking and by
providing better control where to continue after backtracking.

5.1.9. Changing Input

By default, a Spicy parser proceeds linearly through its inputs,
parsing as much as it can and yielding back to the host application
once it runs out of input. There are two ways to change this linear
model: diverting parsing to a different input, and random access
within the current unit’s data.

Parsing custom data

A unit field can have either &parse-from=EXPR or
&parse-at=EXPR attached to it to change where it’s receiving its
data to parse from. EXPR is evaluated at the time the field is
reached. For &parse-from it must produce a value of type
bytes, which will then constitute the input for the field. This
can, e.g., be used to reparse previously received input:

module Test;

public type Foo = unit {
 x: bytes &size=2;
 y: uint16 &parse-from=self.x;
 z: bytes &size=2;

 on %done { print self; }
};

printf '\x01\x02\x03\04' | spicy-driver foo.spicy
[$x=b"\x01\x02", $y=258, $z=b"\x03\x04"]

For &parse-at, EXPR must yield an iterator pointing to (a
still valid) position of the current unit’s input stream (such as
retrieved through input()). The field will then be
parsed from the data starting at that location.

Random access

While a unit is being parsed, you may revert the current input
position backwards to any location between the first byte the unit has
seen and the current position. You can use a set of built-in unit methods to
control the current position:

	input()
	Returns a stream iterator pointing to the current input position.

	set_input()
	Sets the current input position to the location of the specified
stream iterator. Per above, the new position needs to reside
between the beginning of the current unit’s data and the current
position; otherwise an exception will be generated at runtime.

	offset()
	Returns the numerical offset of the current input position
relative to position of the first byte fed into this unit.

	position()
	Returns iterator to the current input position in the stream fed
into this unit.

For random access, you’d typically get the current position through
input(), subtract from it the desired number of bytes you want to
back, and then use set_input to establish that new position. By
further storing iterators as unit variables you can decouple these
steps and, e.g., remember a position to later come back to.

Here’s an example that parses input data twice with different sub units:

module Test;

public type Foo = unit {
 on %init() { self.start = self.input(); }

 a: A { self.set_input(self.start); }
 b: B;

 on %done() { print self; }

 var start: iterator<stream>;
};

type A = unit {
 x: uint32;
};

type B = unit {
 y: bytes &size=4;
};

printf '\00\00\00\01' | spicy-driver foo.spicy
[$a=[$x=1], $b=[$y=b"\x00\x00\x00\x01"], $start=<offset=0 data=b"\x00\x00\x00\x01">]

If you look at output, you see that start iterator remembers it’s
offset, relative to the global input stream. It would also show the
data at that offset if the parser had not already discarded that at
the time we print it out.

Note

Spicy parsers discard input data as quickly as possible as parsing
moves through the input stream. Indeed, that’s why using random
access may come with a performance penalty as the parser now needs
to buffer all of unit’s data until it has been fully processed.

5.1.10. Filters

Spicy supports attaching filters to units that get to preprocess and
transform a unit’s input before its parser gets to see it. A typical
use case for this is stripping off a data encoding, such as
compression or Base64.

A filter is itself just a unit that comes with an additional property
%filter marking it as such. The filter unit’s input represents the
original input to be transformed. The filter calls an internally
provided unit method forward() to pass any
transformed data on to the main unit that it’s attached to. The filter
can call forward arbitrarily many times, each time forwarding a
subsequent chunk of input. To attach a filter to a unit, one calls the
method connect_filter() with an instance of the
filter’s type. Putting that all together, this is an example of a simple
a filter that upper-cases all input before the main parsing unit gets
to see it:

module Test;

type Filter = unit {
 %filter;

 : bytes &eod &chunked {
 self.forward($$.upper());
 }
};

public type Foo = unit {
 on %init { self.connect_filter(new Filter); }
 x: bytes &size=5 { print self.x; }
};

printf 'aBcDe' | spicy-driver foo.spicy
ABCDE

There are a couple of predefined filters coming with Spicy that become
available by importing the filter library module:

	filter::Zlib
	Provides zlib decompression.

	filter::Base64Decode
	Provides base64 decoding.

5.1.11. Sinks

Sinks provide a powerful mechanism to chain multiple units together
into a layered stack, each processing the output of its predecessor. A
sink is the connector here that links two unit instances: one side
writing and one side reading, like a Unix pipe. As additional
functionality, the sink can internally reassemble data chunks that are
arriving out of order before passing anything on.

Here’s a basic example of two units types chained through a sink:

module Test;

public type A = unit {
 on %init { self.b.connect(new B); }

 length: uint8;
 data: bytes &size=self.length { self.b.write($$); }

 on %done { print "A", self; }

 sink b;
};

public type B = unit {
 : /GET /;
 path: /[^\n]+/;

 on %done { print "B", self; }
};

printf '\13GET /a/b/c\n' | spicy-driver -p Test::A foo.spicy
B, [$path=b"/a/b/c"]
A, [$length=11, $data=b"GET /a/b/c\x0a", $b=<sink>]

Let’s see what’s going on here. First, there’s sink b inside the
declaration of A. That’s the connector, kept as state inside
A. When parsing for A is about to begin, the %init hook
connects the sink to a new instance of B; that’ll be the receiver
for data that A is going to write into the sink. That writing
happens inside the field hook for data: once we have parsed that
field, we write what will go to the sink using its built-in
write() method. With that write operation, the
data will emerge as input for the instance of B that we created
earlier, and that will just proceed parsing it normally. As the output
shows, in the end both unit instances end up having their fields set.

As an alternative for using the write() in the
example, there’s some syntactic sugar for fields of type bytes
(like data here): We can just replace the hook with a ->
operator to have the parsed data automatically be forwarded to the
sink: data: bytes &size=self.length -> self.b.

Sinks have a number of further methods, see Sink for the
complete reference. Most of them we will also encounter in the
following when discussing additional functionality that sinks provide.

Note

Because sinks are meant to decouple processing between two units, a
unit connected to a sink will not pass any parse errors back up
to the sink’s parent. If you want to catch them, install an
%error hook inside the connected unit.

5.1.11.1. Using Filters

Sinks also support filters to preprocess any data
they receive before forwarding it on. This works just like for units
by calling the built-in sink method
connect_filter(). For example, if in the example
above, data would have been gzip compressed, we could have
instructed the sink to automatically decompress it by calling
self.b.connect_filter(new filter::Zlib) (leveraging the
Spicy-provided Zlib filter).

5.1.11.2. Leveraging MIME Types

In our example above we knew which type of unit we wanted to connect.
In practice, that may or may not be the case. Often, it only becomes
clear at runtime what the choice for the next layer should be, such as
when using well-known ports to determine the appropriate
application-layer analyzer for a TCP stream. Spicy supports dynamic
selection through a generalized notion of MIME types: Units can
declare which MIME types they know how to parse (see
Meta data) , and sinks have
connect_mime_type() method that will instantiate and
connect any that match their argument (if that’s multiple, all will be
connected and all will receive the same data).

“MIME type” can mean actual MIME types, such text/html.
Applications can, however, also define their own notion of
<type>/<subtype> to model other semantics. For example, one could
use x-port/443 as convention to trigger parsers by well-known
port. An SSL unit would then declare %mime-type = "x-port/443, and
the connection would be established through the equivalent of
connect_mime_type("x-port/%d" % resp_port_of_connection).

Todo

For this specific example, there’s a better solution: We also have
the %port property and should just build up a table index on
that.

5.1.11.3. Reassembly

Reassembly (or defragmentation) of out-of-order data chunks is a common requirement
for many protocols. Sinks have that functionality built-in by
allowing you to associate a position inside a virtual sequence space with each
chunk of data. Sinks will then pass their data on to
connected units only once they have collected a continuous, in-order range of bytes.

The easiest way to leverage this
is to simply associate sequence numbers with each
write() operation:

module Test;

public type Foo = unit {

 sink data;

 on %init {
 self.data.connect(new Bar);
 self.data.write(b"567", 5);
 self.data.write(b"89", 8);
 self.data.write(b"012", 0);
 self.data.write(b"34", 3);
 }
};

public type Bar = unit {
 s: bytes &eod;
 on %done { print self.s; }
};

spicy-driver -p Test::Foo foo.spicy </dev/null
0123456789

By default, Spicy expects the sequence space to start at zero, so the
first byte of the input stream needs to be passed in with sequence
number zero. You can change that base number by calling the
sink method set_initial_sequence_number(). You can
control Spicy’s gap handling, including when to stop buffering data
because you know nothing further will arrive anymore. Spicy can also
notify you about unsuccessful reassembly through a series of built-in unit hooks.
See Sink for a reference of the available functionality.

5.1.12. Contexts

Parsing may need to retain state beyond any specific unit’s lifetime.
For example, a UDP protocol may want to remember information across
individual packets (and hence units), or a bi-directional protocol may
need to correlate the request side with the response side. One option
for implementing this in Spicy is managing such state manually in
global variables, for example by maintaining a
global map that ties a unique connection ID to the information that
needs to be retained. However, doing so is clearly cumbersome and
error prone. As an alternative, a unit can make use of a dedicated
context value, which is an instance of a custom type that has its
lifetime determined by the host application running the parser. For
example, Zeek will tie the context to the underlying connection.

A public unit can declare its context through a unit-level property
called %context, which takes an arbitrary type as its argument.
For example:

public type Foo = unit {
 %context = bytes;
 [...]
};

By default, each instance of such a unit will then receive a unique
context value of that type. The context value can be accessed through
the context() method, which will return a
reference to it:

module Test;

public type Foo = unit {
 %context = int64;

 on %init { print self.context(); }
};

spicy-driver foo.spicy </dev/null
0

By itself, this is not very useful. However, host applications can
control how contexts are maintained, and they may assign the same
context value to multiple units. For example, when parsing a protocol,
the Zeek plugin always creates a single context
value shared by all top-level units belonging to the same connection,
enabling parsers to maintain bi-directional, per-connection state.
The batch mode of spicy-driver does the same.

As an example, the following grammar—mimicking a request/reply-style
protocol—maintains a queue of outstanding textual commands to then
associate numerical result codes with them as the responses come in:

module Test;

We wrap the state into a tuple to make it easy to add more attributes if needed later.
type Pending = tuple<pending: vector<bytes>>;

public type Requests = unit {
 %context = Pending;

 : Request[] foreach { self.context().pending.push_back($$.cmd); }
};

public type Replies = unit {
 %context = Pending;

 : Reply[] foreach {
 if (|self.context().pending|) {
 print "%s -> %s" % (self.context().pending.back(), $$.response);
 self.context().pending.pop_back();
 }
 else
 print "<missing request> -> %s", $$.response;
 }
};

type Request = unit {
 cmd: /[A-Za-z]+/;
 : b"\n";
};

type Reply = unit {
 response: /[0-9]+/;
 : b"\n";
};

spicy-driver -F input.dat context.spicy
msg -> 100
put -> 200
CAT -> 555
end -> 300
get -> 400
LST -> 666

The output is produced from this input batch file. This would work the same when used with
the Zeek plugin on a corresponding packet trace.

Note that the units for the two sides of the connection need to
declare the same %context type. Processing will abort at
runtime with a type mismatch error if that’s not the case.

5.1.13. Error Recovery

Real world input does not always look like what parsers expect:
endpoints may not conform to the protocol’s specification, a parser’s
grammar might not fully cover all of the protocol, or some input may
be missing due to packet loss or stepping into the middle of a
conversation. By default, if a Spicy parser encounters such
situations, it will abort parsing altogether and issue an error
message. Alternatively, however, Spicy allows grammar writers to
specify heuristics to recover from errors. The main challenge here is
finding a spot in the subsequent input where parsing can reliably
resume.

Spicy employs a two-phase approach to such recovery: it first searches
for a possible point in the input stream where it seems promising to
attempt to resume parsing; and then it confirms that choice by trying
to parse a few fields at that location according to the grammar
grammar to see if that’s successful. We say that during the first part
of this process, the Spicy parser is in synchronization mode; d
during the second, it is in trial mode.

Phase 1: Synchronization

To identity locations where parsing can attempt to pick up again after
an error, a grammar can add &synchronize attributes to selected unit
fields, marking them as a synchronization points. Whenever an error
occurs during parsing, Spicy will determine the closest
synchronization point in the grammar following the error’s location,
and then attempt to continue processing there by skipping ahead in the
input data until it aligns with what that field is looking for.

A synchronization point may be any of the following:

	A field for which parsing begins with a constant literal (e.g., a specific
sequence of bytes). To realign the input stream, the parser will search the
input for the next occurrence of this literal, discarding any data in
between. Example:

type X = unit { ... }

type Y = unit {
 a: b"begin-of-Y";
 b: bytes &size=10;
};

type Foo = unit {
 x: X;
 y: Y &synchronize;
};

If parse error occurs during Foo::x, Spicy will move ahead to Foo::y,
switch into synchronization mode, and start search the input for the bytes
begin-of-Y. If found, it’ll continue with parsing Foo::y at that location
in trial mode (see below).

Note

Behind the scenes, synchronization through literals uses the same machinery
as look-ahead parsing, meaning that it works
across sub-units, vector content, switch statements, etc.. No matter how
complex the field, as long as there’s one or more literals that always
must be coming first when parsing it, the field may be used as a
synchronization point.

	A field that’s located inside the input stream at a fixed offset relative to
the field triggering the error. The parser will then be able to skip ahead to
that offset. Example:

type X = unit { ... }
type Y = unit { ... }

type Foo = unit {}
 x: X &size=512;
 y: Y &synchronize;
};

Here, when parsing Foo:x triggers an error, Spicy will know that it can
continue with Foo::y at offset <beginning of Foox:x> + 512.

Todo

This synchronization strategy is not yet implemented.

	When parsing a vector, the inner elements may provide
synchronization points as well. Example:

type X = unit {
 a: b"begin-of-X";
 b: bytes &size=10;
};

type Foo = unit {}
 xs: (X &synchronize)[];
};

If one element of the vector Foo::xs fails to parse, Spicy will attempt
to find the beginning of the next X in the input stream and continue
there. For this to work, the vector’s elements must itself represent valid
synchronization point (e.g., start with a literal). If the list is of fixed
size, after successful synchronization, it will contain the expected number
of entries, but some of them may remain (fully or partially) uninitialized
if they encountered errors.

Phase 2: Trial parsing

Once input has been realigned with a synchronization point, parsing
switches from synchronization mode into trial mode, in which the
parser will attempt to confirm that it has indeed found a viable place
to continue. It does so by proceeding to parse subsequent input from
the synchronization point onwards, until one of the following occurs:

	A unit hook explicitly acknowledges that synchronization has been successful
by executing Spicy’s confirm statement. Typically, a grammar
will do so once it has been able to correctly parse a few fields following
the synchronization point–whatever it needs to sufficiently certain that
it’s indeed seeing the expected structure.

	A unit hook explicitly declines the synchronization by executing Spicy’s
reject statement. This will abandon the current
synchronization attempt, and switch back into the original synchronization
mode again to find another location to try.

	Parsing reaches the end of the grammar without either confirm or
reject already called. In this case, the parser will abort with a fatal
parse error.

Note that during trial mode, any fields between the synchronization
point and the eventual confirm/reject location will already be
processed as usual, including any hooks executing. This may leave the
unit’s state in a partially initialized state if trial parsing
eventually fails. Trial mode will also consume any input along the
way, with any further synchronization attempts proceeding only on
subsequent, not yet seen, data.

Synchronisation Hooks

For customization, Spicy provides a set of hooks executing at
different points during the synchronization process:

	on %synced { ...}
	Executes when a synchronization point has been found and parsing
resumes there, just before the parser begins processing the
corresponding field in trial mode.

	on %confirmed { ...}
	Executes when trial mode ends successfully with confirm.

	on %rejected { ...}
	Executes when trial mode fails with reject.

Example Synchronization Process

As an example, let’s consider a grammar consisting of two sections
where each section is started with a section header literal (SEC_A
and SEC_B here).

We want to allow for inputs which miss parts or all of the first
section. For such inputs, we can still synchronize the input stream by
looking for the start of the second section. (For simplicity, we just
use a single unit, even though typically one would probably have
separate units for the two sections.)

module Test;

public type Example = unit {
 start_a: /SEC_A/;
 a: uint8;

 # If we fail to find e.g., 'SEC_A' in the input, try to synchronize on this literal.
 start_b: /SEC_B/ &synchronize;
 b: bytes &eod;

 # In this example confirm unconditionally.
 on %synced {
 print "Synced: %s" % self;
 confirm;
 }

 # Perform logging for these %confirmed and %rejected.
 on %confirmed { print "Confirmed: %s" % self; }
 on %rejected { print "Rejected: %s" % self; }

 on %done { print "Done %s" % self; }
};

Let us consider that this parsers encounters the input
\xFFSEC_Babc that missed the SEC_A section marker:

	start_a missing,

	a=255

	start_b=SEC_B as expected, and

	b=abc.

For such an input parsing will encounter an initial error when it sees
\xFF where SEC_A would have been expected.

	Since start_b is marked as a synchronization point, the parser
enters synchronisation mode, and jumps over the field a to
start_b, to now search for SEC_B.

	At this point the input still contains the unexpected \xFF and
remains \xFFSEC_Babc . While searching for SEC_B \xFF
is skipped over, and then the expected token is found. The input
is now SEC_Babc.

	The parser has successfully synchronized and enters trial mode. All
%synced hooks are invoked.

	The unit’s %synced hook executes confirm and the parser
leaves trial mode. All %confirmed hooks are invoked.

	Regular parsing continues at start_b. The input was SEC_Babc so
start_b is set to SEC_B and b to abc.

Since parsing for start_a was unsuccessful and a was jumped
over, their fields remain unset.

printf '\xFFSEC_Babc' | spicy-driver foo.spicy
Synced: [$start_a=(not set), $a=(not set), $start_b=(not set), $b=(not set)]
Confirmed: [$start_a=(not set), $a=(not set), $start_b=(not set), $b=(not set)]
Done [$start_a=(not set), $a=(not set), $start_b=b"SEC_B", $b=b"abc"]

5.2. Language

Spicy provides a domain-specific language that consists of two main
types of constructs: parsing elements that capture the layout of an
input format; along with more standard constructs of typical
imperative scripting languages, such as modules, types, declarations,
expressions, etc.. While the previous section focuses
on the former, we summarize the more “traditional” parts of Spicy’s
language in the following.

We assume some familiarity with other scripting languages. Generally,
where not otherwise stated, think of Spicy as a “C-style scripting
language” in terms of syntax & semantics, with corresponding rules
for, e.g., block structure ({ ... }), operator precedence,
identifier naming, etc.. If you are familiar with Zeek’s scripting
language in particular, you should be able to get up to speed with
Spicy pretty quickly.

	5.2.1. Identifiers

	5.2.2. Modules
	5.2.2.1. Importing

	5.2.2.2. Global Properties

	5.2.3. Functions

	5.2.4. Variables and Constants

	5.2.5. Types
	5.2.5.1. Address

	5.2.5.2. Bitfield

	5.2.5.3. Bool

	5.2.5.4. Bytes

	5.2.5.5. Enum

	5.2.5.6. Exception

	5.2.5.7. Integer

	5.2.5.8. Interval

	5.2.5.9. List

	5.2.5.10. Map

	5.2.5.11. Optional

	5.2.5.12. Port

	5.2.5.13. Real

	5.2.5.14. Regular Expression

	5.2.5.15. Set

	5.2.5.16. Sink

	5.2.5.17. Stream

	5.2.5.18. String

	5.2.5.19. Struct

	5.2.5.20. Time

	5.2.5.21. Tuple

	5.2.5.22. Unit

	5.2.5.23. Vector

	5.2.5.24. Void

	5.2.6. Statements
	5.2.6.1. assert

	5.2.6.2. break

	5.2.6.3. confirm

	5.2.6.4. for

	5.2.6.5. if

	5.2.6.6. import

	5.2.6.7. print

	5.2.6.8. reject

	5.2.6.9. return

	5.2.6.10. stop

	5.2.6.11. switch

	5.2.6.12. throw

	5.2.6.13. try/catch

	5.2.6.14. while

	5.2.7. Error Handling

	5.2.8. Conditional Compilation

	5.2.9. Appendix
	5.2.9.1. Reserved Keywords

5.2.1. Identifiers

Spicy distinguishes between different kinds of identifiers:

	Declarations
	Identifiers used in declarations of variables, types, functions,
etc., must start with a letter or underscore, and otherwise
contain only alphanumerical characters and underscores. They must
not start with two underscores, and cannot match any of
Spicy’s built-in keywords.

	Attributes
	Identifiers augmenting other language elements with additional
attributes always begin with &. They otherwise follow the same
rules as identifiers for declarations, except that they also
permit dashes. Note that you cannot define your own attributes;
usage is limited to a set of predefined options.

	Properties
	Identifiers defining properties of modules and types (as in,
e.g., Meta data) always begin with %. They otherwise
follow the same rules as identifiers for declarations, except that
they also permit dashes. Note that you cannot define your own
properties; usage is limited to a set of predefined options.

Identifiers are always case-sensitive in Spicy.

5.2.2. Modules

Spicy source code is structured around modules, which
introduce namespaces around other elements defined inside (e.g.,
types, functions). Accordingly, all Spicy input files must start with
module NAME;, where NAME is scope that’s being created.

After that initial module statement, modules may contain arbitrary
list of declarations (types, globals, functions), as well as code
statements to execute. Any code defined at the global level will run
once at the module’s initialization time. That’s what enables Spicy’s
minimal hello-world module to look like the following:

module Test;

print "Hello, world!";

spicyc -j hello-world.spicy
Hello, world!

5.2.2.1. Importing

To make the contents of another module accessible, Spicy provides an
import NAME; statement that pulls in all public identifiers of the
specified external module. Spicy then searches for name.spicy
(i.e., the lower-case version of the imported module NAME plus a
.spicy extension) along it’s module search path. By default,
that’s the current directory plus the location where Spicy’s pre-built
library modules are installed.

spicy-config --libdirs shows the default search path. The Spicy
tools spicy && spicy-driver provide --library-path options
to add further custom directories. They also allow to fully replace the
built-in default search with a custom value by setting the environment
variable SPICY_PATH.

There’s a second version of the import statement that allows to import
from relative locations inside the search path: import NAME from
X.Y.Z; searches the module NAME (i.e., NAME.spicy) inside a
sub-directory X/Y/Z along the search path.

Once Spicy code has imported a module, it can access identifiers by
prefixing them with the module’s namespace:

import MyModule;

print MyModule::my_global_variable;

Generally, only identifiers declared as public become accessible
across module boundaries. The one exception are types, which are
implicitly public.

Note

Spicy makes types implicitly public so that external unit
hooks always have access to them. We may consider a
more fine-grained model here in the future.

Spicy comes with a set of library modules that you
may import in your code to gain access to their functionality.

5.2.2.2. Global Properties

A module may define the following global properties:

	%byte-order = ORDER;
	Defaults the byte order for any parsing inside this module to
<expr>, where ORDER must be of type is type
spicy::ByteOrder.

	%spicy-version = "VERSION";
	Specifies that the module requires a given minimum version of
Spicy, where VERSION must be a string of the form X.Y
or X.Y.Z.

	%skip = REGEXP;
	Specifies a pattern which should be skipped when encountered in the
input stream in between parsing of unit fields (including before/after
the first/last field).

	%skip-pre = REGEXP;
	Specifies a pattern which should be skipped when encountered in the
input stream before parsing of a unit begins.

	%skip-post = REGEXP;
	Specifies a pattern which should be skipped when encountered in the
input stream after parsing of a unit has finished.

5.2.3. Functions

Spicy’s language allows to define custom functions just
like most other languages. The generic syntax for defining a function
with is N parameters is:

[public] function NAME(NAME_1: TYPE_1, ..., NAME_N: TYPE_N) [: RETURN_TYPE] {
 ... BODY ...
}

A public function will be accessible from other modules . If the return type is skipped, it’s implicitly taken as
void, i.e., the function will not return anything. If a function
has return type other than void, all paths through the body must end
in a return returning a corresponding value.

A parameter specification can be postfixed with a default value:
NAME: TYPE = DEFAULT. Callers may then omit that parameter.

By default, by parameters are passed by constant reference and hence
remain read-only inside the function’s body. To make a parameter
modifiable, with any changes becoming visible to the caller, a
parameter can be prefixed with inout:

module Test;

global s = "1";

function foo(inout x: string) {
 x = "2";
}

print s;
foo(s);
print s;

1
2

Spicy has couple more function-like constructs (Unit Hooks and
Unit Parameters) that use the same conventions for parameter
passing.

5.2.4. Variables and Constants

At the global module level, we declare variables with the global
keyword:

[public] global NAME: TYPE [= DEFAULT];

This defines a global variable called NAME with type TYPE. If the
variable is declared with public visibility other modules can reference it.
If a default is given, Spicy initializes the global accordingly before any
code executes. Otherwise, the global receives a type-specific default,
typically the type’s notion of a null value. As a result, globals are always
initialized to a well-defined value.

As a shortcut, you can skip : TYPE if the global comes with a
default. Spicy then just applies the expression’s type to the global.

We define global constants in a similar way, just replacing global
with const:

const x: uint32 = 42;
const foo = "Foo";

Inside a function, local variables use the same syntax once more, just
prefixed with local this time:

function f() {
 local x: bytes;
 local y = "Y";

}

Usual scoping rules apply to locals. Just like globals, locals are
always initialized to a well-defined value: either their default if
given, or the type’s null value.

5.2.5. Types

5.2.5.1. Address

The address type stores both IPv4 and IPv6 addresses.

Type

	addr

Constants

	IPv4: 1.2.3.4

	IPv6: [2001:db8:85a3:8d3:1319:8a2e:370:7348], [::1.2.3.4]

Methods

	
family() → hilti::AddressFamily

	Returns the protocol family of the address, which can be IPv4 or IPv6.

Operators

	
addr == addr → bool

	Compares two address values.

	
addr != addr → bool

	Compares two address values.

5.2.5.2. Bitfield

Bitfields provide access to individual bitranges inside an unsigned
integer. That can’t be instantiated directly, but must be defined and
parsed inside a unit.

Type

	bitfield(N) { RANGE_1; ...; RANGE_N }

	Each RANGE has one of the forms LABEL: A or LABEL: A..B
where A and B are bit numbers.

Operators

	
bitfield . <attribute> → <field type>

	Retrieves the value of a bitfield’s attribute. This is the value of
the corresponding bits inside the underlying integer value, shifted to
the very right.

5.2.5.3. Bool

Boolean values can be True or False.

Type

	bool

Constants

	True, False

Operators

	
bool == bool → bool

	Compares two boolean values.

	
bool != bool → bool

	Compares two boolean values.

5.2.5.4. Bytes

Bytes instances store raw, opaque data. They provide iterators to
traverse their content.

Types

	bytes

	iterator<bytes>

Constants

	b"Spicy", b""

Methods

	
at(i: uint<64>) → iterator<bytes>

	Returns an iterator representing the offset i inside the bytes
value.

	
decode(charset: enum = hilti::Charset::UTF8) → string

	Interprets the bytes as representing an binary string encoded with
the given character set, and converts it into a UTF8 string.

	
find(needle: bytes) → tuple<bool, iterator<bytes>>

	Searches needle in the value’s content. Returns a tuple of a boolean
and an iterator. If needle was found, the boolean will be true and
the iterator will point to its first occurrence. If needle was not
found, the boolean will be false and the iterator will point to the
last position so that everything before it is guaranteed to not
contain even a partial match of needle. Note that for a simple
yes/no result, you should use the in operator instead of this
method, as it’s more efficient.

	
join(inout parts: vector) → bytes

	Returns the concatenation of all elements in the parts list rendered
as printable strings. The portions will be separated by the bytes
value to which this method is invoked as a member.

	
lower(charset: enum = hilti::Charset::UTF8) → bytes

	Returns a lower-case version of the bytes value, assuming it is
encoded in character set charset.

	
match(regex: regexp, [group: uint<64>]) → result<bytes>

	Matches the bytes object against the regular expression regex.
Returns the matching part or, if group is given, then the
corresponding subgroup. The expression is considered anchored to the
beginning of the data.

	
split([sep: bytes]) → vector<bytes>

	Splits the bytes value at each occurrence of sep and returns a
vector containing the individual pieces, with all separators removed.
If the separator is not found, the returned vector will have the whole
bytes value as its single element. If the separator is not given, or
empty, the split will take place at sequences of white spaces.

	
split1([sep: bytes]) → tuple<bytes, bytes>

	Splits the bytes value at the first occurrence of sep and returns
the two parts as a 2-tuple, with the separator removed. If the
separator is not found, the returned tuple will have the whole bytes
value as its first element and an empty value as its second element.
If the separator is not given, or empty, the split will take place at
the first sequence of white spaces.

	
starts_with(b: bytes) → bool

	Returns true if the bytes value starts with b.

	
strip([side: spicy::Side], [set: bytes]) → bytes

	Removes leading and/or trailing sequences of all characters in set
from the bytes value. If set is not given, removes all white spaces.
If side is given, it indicates which side of the value should be
stripped; Side::Both is the default if not given.

	
sub(begin: uint<64>, end: uint<64>) → bytes

	Returns the subsequence from offset begin to (but not including)
offset end.

	
sub(inout begin: iterator<bytes>, inout end: iterator<bytes>) → bytes

	Returns the subsequence from begin to (but not including) end.

	
sub(inout end: iterator<bytes>) → bytes

	Returns the subsequence from the value’s beginning to (but not
including) end.

	
to_int([base: uint<64>]) → int<64>

	Interprets the data as representing an ASCII-encoded number and
converts that into a signed integer, using a base of base. base
must be between 2 and 36. If base is not given, the default is 10.

	
to_int(byte_order: enum) → int<64>

	Interprets the bytes as representing an binary number encoded with
the given byte order, and converts it into signed integer.

	
to_time([base: uint<64>]) → time

	Interprets the bytes as representing a number of seconds since the
epoch in the form of an ASCII-encoded number, and converts it into a
time value using a base of base. If base is not given, the default
is 10.

	
to_time(byte_order: enum) → time

	Interprets the bytes as representing as number of seconds since
the epoch in the form of an binary number encoded with the given byte
order, and converts it into a time value.

	
to_uint([base: uint<64>]) → uint<64>

	Interprets the data as representing an ASCII-encoded number and
converts that into an unsigned integer, using a base of base. base
must be between 2 and 36. If base is not given, the default is 10.

	
to_uint(byte_order: enum) → uint<64>

	Interprets the bytes as representing an binary number encoded with
the given byte order, and converts it into an unsigned integer.

	
upper(charset: enum = hilti::Charset::UTF8) → bytes

	Returns an upper-case version of the bytes value, assuming it is
encoded in character set charset.

Operators

	
begin(<container>) → <iterator>

	Returns an iterator to the beginning of the container’s content.

	
end(<container>) → <iterator>

	Returns an iterator to the end of the container’s content.

	
bytes == bytes → bool

	Compares two bytes values lexicographically.

	
bytes > bytes → bool

	Compares two bytes values lexicographically.

	
bytes >= bytes → bool

	Compares two bytes values lexicographically.

	
bytes in bytes → bool

	Returns true if the right-hand-side value contains the left-hand-side
value as a subsequence.

	
bytes !in bytes → bool

	Performs the inverse of the corresponding in operation.

	
bytes < bytes → bool

	Compares two bytes values lexicographically.

	
bytes <= bytes → bool

	Compares two bytes values lexicographically.

	
|bytes| → uint<64>

	Returns the number of bytes the value contains.

	
bytes + bytes → bytes

	Returns the concatenation of two bytes values.

	
bytes += bytes → bytes

	Appends one bytes value to another.

	
bytes += uint<8> → bytes

	Appends a single byte to the data.

	
bytes += view<stream> → bytes

	Appends a view of stream data to a bytes instance.

	
bytes != bytes → bool

	Compares two bytes values lexicographically.

Iterator Operators

	
*iterator<bytes> → uint<8>

	Returns the character the iterator is pointing to.

	
iterator<bytes> - iterator<bytes> → int<64>

	Returns the number of bytes between the two iterators. The result will
be negative if the second iterator points to a location before the
first. The result is undefined if the iterators do not refer to the
same bytes instance.

	
iterator<bytes> == iterator<bytes> → bool

	Compares the two positions. The result is undefined if they are not
referring to the same bytes value.

	
iterator<bytes> > iterator<bytes> → bool

	Compares the two positions. The result is undefined if they are not
referring to the same bytes value.

	
iterator<bytes> >= iterator<bytes> → bool

	Compares the two positions. The result is undefined if they are not
referring to the same bytes value.

	
iterator<bytes>++ → iterator<bytes>

	Advances the iterator by one byte, returning the previous position.

	
++iterator<bytes> → iterator<bytes>

	Advances the iterator by one byte, returning the new position.

	
iterator<bytes> < iterator<bytes> → bool

	Compares the two positions. The result is undefined if they are not
referring to the same bytes value.

	
iterator<bytes> <= iterator<bytes> → bool

	Compares the two positions. The result is undefined if they are not
referring to the same bytes value.

	
iterator<bytes> + uint<64> → iterator<bytes> (commutative)

	Returns an iterator which is pointing the given number of bytes beyond
the one passed in.

	
iterator<bytes> += uint<64> → iterator<bytes>

	Advances the iterator by the given number of bytes.

	
iterator<bytes> != iterator<bytes> → bool

	Compares the two positions. The result is undefined if they are not
referring to the same bytes value.

5.2.5.5. Enum

Enum types associate labels with numerical values.

Type

	enum { LABEL_1; ... LABEL_N }

	Each label has the form ID [= VALUE]. If VALUE is skipped,
one will be assigned automatically.

	Each enum type comes with an implicitly defined Undef label with
a value distinct from all other ones. When coerced into a boolean,
an enum will be true iff it’s not Undef.

Note

An instance of an enum can assume a numerical value that
does not map to any of its defined labels. If printed, it will then
render into <unknown-N> in that case, with N being the
decimal expression of its numeric value.

Constants

	The individual labels represent constants of the corresponding type
(e.g., MyEnum::MyFirstLabel is a constant of type MyEnum).

Methods

	
has_label() → bool

	Returns true if the value of op1 corresponds to a known enum label
(other than Undef), as defined by it’s type.

Operators

	
enum-type(int) → enum

	Instantiates an enum instance initialized from a signed integer value.
The value does not need to correspond to any of the type’s
enumerator labels.

	
enum-type(uint) → enum

	Instantiates an enum instance initialized from an unsigned integer
value. The value does not need to correspond to any of the type’s
enumerator labels. It must not be larger than the maximum that a
signed 64-bit integer value can represent.

	
cast<int-type>(enum) → int

	Casts an enum value into a signed integer. If the enum value is
Undef, this will return -1.

	
cast<uint-type>(enum) → uint

	Casts an enum value into a unsigned integer. This will throw an
exception if the enum value is Undef.

	
enum == enum → bool

	Compares two enum values.

	
enum != enum → bool

	Compares two enum values.

5.2.5.6. Exception

Todo

This isn’t available in Spicy yet (#89 [https://github.com/zeek/spicy/issues/89]).

5.2.5.7. Integer

Spicy distinguishes between signed and unsigned integers, and always
requires specifying the bitwidth of a type.

Type

	intN for signed integers, where N can be one of 8, 16, 32, 64.

	uintN for signed integers, where N can be one of 8, 16, 32, 64.

Constants

	Unsigned integer: 1234, +1234, uint8(42), uint16(42), uint32(42), uint64(42)

	Signed integer: -1234, int8(42), int8(-42), int16(42), int32(42), int64(42)

Operators

	
uint & uint → uint

	Computes the bit-wise ‘and’ of the two integers.

	
uint | uint → uint

	Computes the bit-wise ‘or’ of the two integers.

	
uint ^ uint → uint

	Computes the bit-wise ‘xor’ of the two integers.

	
cast<enum-type>(int) → enum

	Converts the value into an enum instance. The value does not need to
correspond to any of the target type’s enumerator labels.

	
cast<enum-type>(uint) → enum

	Converts the value into an enum instance. The value does not need to
correspond to any of the target type’s enumerator labels. It must not
be larger than the maximum that a signed 64-bit integer value can
represent.

	
cast<int-type>(int) → int

	Converts the value into another signed integer type, accepting any
loss of information.

	
cast<int-type>(uint) → int

	Converts the value into a signed integer type, accepting any loss of
information.

	
cast<interval-type>(int) → interval

	Interprets the value as number of seconds.

	
cast<interval-type>(uint) → interval

	Interprets the value as number of seconds.

	
cast<real-type>(int) → real

	Converts the value into a real, accepting any loss of information.

	
cast<real-type>(uint) → real

	Converts the value into a real, accepting any loss of information.

	
cast<time-type>(uint) → time

	Interprets the value as number of seconds since the UNIX epoch.

	
cast<uint-type>(int) → uint

	Converts the value into an unsigned integer type, accepting any loss
of information.

	
cast<uint-type>(uint) → uint

	Converts the value into another unsigned integer type, accepting any
loss of information.

	
int-- → int

	Decrements the value, returning the old value.

	
uint-- → uint

	Decrements the value, returning the old value.

	
++int → int

	Increments the value, returning the new value.

	
++uint → uint

	Increments the value, returning the new value.

	
int - int → int

	Computes the difference between the two integers.

	
uint - uint → uint

	Computes the difference between the two integers.

	
int -= int → int

	Decrements the first value by the second, assigning the new value.

	
uint -= uint → uint

	Decrements the first value by the second.

	
int / int → int

	Divides the first integer by the second.

	
uint / uint → uint

	Divides the first integer by the second.

	
int /= int → int

	Divides the first value by the second, assigning the new value.

	
uint /= uint → uint

	Divides the first value by the second, assigning the new value.

	
int == int → bool

	Compares the two integers.

	
uint == uint → bool

	Compares the two integers.

	
int > int → bool

	Compares the two integers.

	
uint > uint → bool

	Compares the two integers.

	
int >= int → bool

	Compares the two integers.

	
uint >= uint → bool

	Compares the two integers.

	
int++ → int

	Increments the value, returning the old value.

	
uint++ → uint

	Increments the value, returning the old value.

	
++int → int

	Increments the value, returning the new value.

	
++uint → uint

	Increments the value, returning the new value.

	
int < int → bool

	Compares the two integers.

	
uint < uint → bool

	Compares the two integers.

	
int <= int → bool

	Compares the two integers.

	
uint <= uint → bool

	Compares the two integers.

	
int % int → int

	Computes the modulus of the first integer divided by the second.

	
uint % uint → uint

	Computes the modulus of the first integer divided by the second.

	
int * int → int

	Multiplies the first integer by the second.

	
uint * uint → uint

	Multiplies the first integer by the second.

	
int *= int → int

	Multiplies the first value by the second, assigning the new value.

	
uint *= uint → uint

	Multiplies the first value by the second, assigning the new value.

	
~uint → uint

	Computes the bit-wise negation of the integer.

	
int ** int → int

	Computes the first integer raised to the power of the second.

	
uint ** uint → uint

	Computes the first integer raised to the power of the second.

	
uint << uint → uint

	Shifts the integer to the left by the given number of bits.

	
uint >> uint → uint

	Shifts the integer to the right by the given number of bits.

	
-int → int

	Inverts the sign of the integer.

	
int + int → int

	Computes the sum of the integers.

	
uint + uint → uint

	Computes the sum of the integers.

	
int += int → int

	Increments the first integer by the second.

	
uint += uint → uint

	Increments the first integer by the second.

	
int != int → bool

	Compares the two integers.

	
uint != uint → bool

	Compares the two integers.

5.2.5.8. Interval

Am interval value represents a period of time. Intervals are stored
with nanosecond resolution, which is retained across all calculations.

Type

	interval

Constants

	interval(SECS) creates an interval from a signed integer or real
value SECS specifying the period in seconds.

	interval_ns(NSECS) creates an interval from a signed integer
value NSECS specifying the period in nanoseconds.

Methods

	
nanoseconds() → uint<64>

	Returns the time as an integer value representing nanoseconds since
the UNIX epoch.

	
seconds() → real

	Returns the time as a real value representing seconds since the UNIX
epoch.

Operators

	
time - time → interval

	Returns the difference of the times.

	
time - interval → time

	Subtracts the interval from the time.

	
time == time → bool

	Compares two time values.

	
time > time → bool

	Compares the times.

	
time >= time → bool

	Compares the times.

	
time < time → bool

	Compares the times.

	
time <= time → bool

	Compares the times.

	
time + interval → time (commutative)

	Adds the interval to the time.

	
time != time → bool

	Compares two time values.

5.2.5.9. List

Spicy uses lists only in a limited form as temporary values, usually
for initializing other containers. That means you can only create list
constants, but you cannot declare variables or unit fields to have a
list type (use vector instead).

Constants

	[E_1, E_2, ..., E_N] creates a list of N elements. The
values E_I must all have the same type. [] creates an empty
list of unknown element type.

	[EXPR for ID in ITERABLE] creates a list by evaluating EXPR
for all elements in ITERABLE, assembling the individual results
into the final list value. The extended form [EXPR for ID in
SEQUENCE if COND] includes only elements into the result for which
COND evaluates to True. Both EXPR and COND can use
ID to refer to the current element.

	list(E_1, E_2, ..., E_N) is the same as [E_1, E_2, ...,
E_N], and list() is the same as [].

	list<T>(E_1, E_2, ..., E_N) creates a list of type T,
initializing it with the N elements E_I. list<T>()
creates an empty list.

Operators

	
begin(<container>) → <iterator>

	Returns an iterator to the beginning of the container’s content.

	
end(<container>) → <iterator>

	Returns an iterator to the end of the container’s content.

	
list == list → bool

	Compares two lists element-wise.

	
|list| → uint<64>

	Returns the number of elements a list contains.

	
list != list → bool

	Compares two lists element-wise.

5.2.5.10. Map

Maps are containers holding key/value pairs of elements, with fast
lookup for keys to retrieve the corresponding value. They provide
iterators to traverse their content, with no particular ordering.

Types

	map<K, V> specifies a map with key type K and value type V.

	iterator<map<K, V>>

Constants

	map(K_1: V_1, K_2: V_2, ..., K_N: V_N) creates a map of N
elements, initializing it with the given key/value pairs. The keys
K_I must all have the same type, and the values V_I must
likewise all have the same type. map() creates an empty map of
unknown key/value types; this cannot be used directly but must be
coerced into a fully-defined map type first.

	map<K, V>(K_1: V_1, K_2: V_2, ..., K_N: V_N) creates a map of
type map<K, V>, initializing it with the given key/value pairs.
map<K, V>() creates an empty map.

Methods

	
clear() → void

	Removes all elements from the map.

	
get(key: <any>, [default: <any>]) → <type of element>

	Returns the map’s element for the given key. If the key does not
exist, returns the default value if provided; otherwise throws a
runtime error.

Operators

	
begin(<container>) → <iterator>

	Returns an iterator to the beginning of the container’s content.

	
delete map[key] → void

	Removes an element from the map.

	
end(<container>) → <iterator>

	Returns an iterator to the end of the container’s content.

	
map == map → bool

	Compares two maps element-wise.

	
<any> in map → bool

	Returns true if an element is part of the map.

	
<any> !in map → bool

	Performs the inverse of the corresponding in operation.

	
map[key] → <type of element>

	Returns the map’s element for the given key. The key must exist,
otherwise the operation will throw a runtime error.

	
map[key]=<any> → void

	Updates the map value for a given key. If the key does not exist a new
element is inserted.

	
|map| → uint<64>

	Returns the number of elements a map contains.

	
map != map → bool

	Compares two maps element-wise.

Iterator Operators

	
*iterator<map> → <dereferenced type>

	Returns the map element that the iterator refers to.

	
iterator<map> == iterator<map> → bool

	Returns true if two map iterators refer to the same location.

	
iterator<map>++ → iterator<map>

	Advances the iterator by one map element, returning the previous
position.

	
++iterator<map> → iterator<map>

	Advances the iterator by one map element, returning the new position.

	
iterator<map> != iterator<map> → bool

	Returns true if two map iterators refer to different locations.

5.2.5.11. Optional

An optional value may hold a value of another type, or can
alternatively remain unset. A common use case for optional is the
return value of a function that may fail.

	optional<TYPE>

Constants

	optional(EXPR) creates an optional<T>, where T is the
type of the expression EXPR and initializes it with the value of
EXPR.

More commonly, however, optional values are initialized through
assignment:

	Assigning an instance of TYPE to an optional<TYPE> sets it
to the instance’s value.

	Assigning Null to an optional<TYPE> unsets it.

Operators

	
*optional → <dereferenced type>

	Returns the element stored, or throws an exception if none.

5.2.5.12. Port

Ports represent the combination of a numerical port number and an
associated transport-layer protocol.

Type

	port

Constants

	443/tcp, 53/udp

	port(PORT, PROTOCOL) creates a port where PORT is a port number and PROTOCOL a spicy::Protocol.

Methods

	
protocol() → hilti::Protocol

	Returns the protocol the port is using (such as UDP or TCP).

Operators

	
port == port → bool

	Compares two port values.

	
port != port → bool

	Compares two port values.

5.2.5.13. Real

“Real” values store floating points with double precision.

Type

	real

Constants

	3.14, 10e9, 0x1.921fb78121fb8p+1

Operators

	
cast<int-type>(real) → int

	Converts the value to a signed integer type, accepting any loss of
information.

	
cast<interval-type>(real) → interval

	Interprets the value as number of seconds.

	
cast<time-type>(real) → time

	Interprets the value as number of seconds since the UNIX epoch.

	
cast<uint-type>(real) → uint

	Converts the value to an unsigned integer type, accepting any loss of
information.

	
real - real → real

	Returns the difference between the two values.

	
real -= real → real

	Subtracts the second value from the first, assigning the new value.

	
real / real → real

	Divides the first value by the second.

	
real /= real → real

	Divides the first value by the second, assigning the new value.

	
real == real → bool

	Compares the two reals.

	
real > real → bool

	Compares the two reals.

	
real >= real → bool

	Compares the two reals.

	
real < real → bool

	Compares the two reals.

	
real <= real → bool

	Compares the two reals.

	
real % real → real

	Computes the modulus of the first real divided by the second.

	
real * real → real

	Multiplies the first real by the second.

	
real *= real → real

	Multiplies the first value by the second, assigning the new value.

	
real ** real → real

	Computes the first real raised to the power of the second.

	
-real → real

	Inverts the sign of the real.

	
real + real → real

	Returns the sum of the reals.

	
real += real → real

	Adds the first real to the second, assigning the new value.

	
real != real → bool

	Compares the two reals.

5.2.5.14. Regular Expression

Spicy provides POSIX-style regular expressions.

Type

	regexp

Constants

	/Foo*bar?/, /X(..)(..)(..)Y/

Regular expressions use the extended POSIX syntax, with a few smaller
differences and extensions:

	Supported character classes are: [:lower:], [:upper:],
[:digit:], [:blank:].

	\b asserts a word-boundary, \B matches asserts no word
boundary.

	\xXX matches a byte with the binary hex value XX (e.g.,
\xff matches a byte of decimal value 255).

	{#<number>} associates a numerical ID with a regular expression
(useful for set matching).

Regular expression constants support two optional attributes:

	&anchor
	Implicitly anchor the expression, meaning it must match at the
beginning of the data.

	&nosub
	Compile without support for capturing subexpressions, which makes
matching more efficient.

Methods

	
find(data: bytes) → tuple<int<32>, bytes>

	Searches the regular expression in data and returns the matching
part. Different from match, this does not anchor the expression to
the beginning of the data: it will find matches at arbitrary starting
positions. Returns a 2-tuple with (1) an integer match indicator with
the same semantics as that returned by find; and (2) if a match
has been found, the data that matches the regular expression. (Note:
Currently this function has a runtime that’s quadratic in the size of
data; consider using match if performance is an issue.)

	
match(data: bytes) → int<32>

	Matches the regular expression against data. If it matches, returns
an integer that’s greater than zero. If multiple patterns have been
compiled for parallel matching, that integer will be the ID of the
matching pattern. Returns -1 if the regular expression does not match
the data, but could still yield a match if more data were added.
Returns 0 if the regular expression is not found and adding more data
wouldn’t change anything. The expression is considered anchored, as
though it starts with an implicit ^ regexp operator, to the
beginning of the data.

	
match_groups(data: bytes) → vector<bytes>

	Matches the regular expression against data. If it matches, returns
a vector with one entry for each capture group defined by the regular
expression; starting at index 1. Each of these entries is a view
locating the matching bytes. In addition, index 0 always contains the
data that matches the full regular expression. Returns an empty vector
if the expression is not found. The expression is considered anchored,
as though it starts with an implicit ^ regexp operator, to the
beginning of the data. This method is not compatible with pattern sets
and will throw a runtime exception if used with a regular expression
compiled from a set.

	
token_matcher() → hilti::MatchState

	Initializes state for matching regular expression incrementally
against chunks of future input. The expression is considered anchored,
as though it starts with an implicit ^ regexp operator, to the
beginning of the data.

5.2.5.15. Set

Sets are containers for unique elements with fast lookup. They provide
iterators to traverse their content, with no particular ordering.

Types

	set<T> specifies a set with unique elements of type T.

	iterator<set<T>>

Constants

	set(E_1, E_2, ..., E_N) creates a set of N elements.
The values E_I must all have the same type. set() creates
an empty set of unknown element type; this cannot be used
directly but must be coerced into a fully-defined set type first.

	set<T>(E_1, E_2, ..., E_N) creates a set of type T,
initializing it with the elements E_I. set<T>() creates
an empty set.

Methods

	
clear() → void

	Removes all elements from the set.

Operators

	
add set[element] → void

	Adds an element to the set.

	
begin(<container>) → <iterator>

	Returns an iterator to the beginning of the container’s content.

	
delete set[element] → void

	Removes an element from the set.

	
end(<container>) → <iterator>

	Returns an iterator to the end of the container’s content.

	
set == set → bool

	Compares two sets element-wise.

	
<any> in set → bool

	Returns true if an element is part of the set.

	
<any> !in set → bool

	Performs the inverse of the corresponding in operation.

	
|set| → uint<64>

	Returns the number of elements a set contains.

	
set != set → bool

	Compares two sets element-wise.

Iterator Operators

	
*iterator<set> → <dereferenced type>

	Returns the set element that the iterator refers to.

	
iterator<set> == iterator<set> → bool

	Returns true if two sets iterators refer to the same location.

	
iterator<set>++ → iterator<set>

	Advances the iterator by one set element, returning the previous
position.

	
++iterator<set> → iterator<set>

	Advances the iterator by one set element, returning the new position.

	
iterator<set> != iterator<set> → bool

	Returns true if two sets iterators refer to different locations.

5.2.5.16. Sink

Sinks act as a connector between two units, facilitating feeding the
output of one as input into the other. See Sinks for a full
description.

Sinks are special in that they don’t represent a type that’s generally
available for instantiation. Instead they need to be declared as the
member of unit using the special sink keyword. You can, however,
maintain references to sinks by assigning the unit member to a variable
of type Sink&.

Methods

	
close() → void

	Closes a sink by disconnecting all parsing units. Afterwards the
sink’s state is as if it had just been created (so new units can be
connected). Note that a sink is automatically closed when the unit it
is part of is done parsing. Also note that a previously connected
parsing unit can not be reconnected; trying to do so will still
throw a UnitAlreadyConnected exception.

	
connect(u: strong_ref<unit>) → void

	Connects a parsing unit to a sink. All subsequent write operations to
the sink will pass their data on to this parsing unit. Each unit can
only be connected to a single sink. If the unit is already connected,
a UnitAlreadyConnected exception is thrown. However, a sink can
have more than one unit connected to it.

	
connect_filter(filter: strong_ref<unit>) → void

	Connects a filter unit to the sink that will transform its input
transparently before forwarding it for parsing to other connected
units.

Multiple filters can be added to a sink, in which case they will be
chained into a pipeline and the data will be passed through them in
the order they have been added. The parsing will then be carried out
on the output of the last filter in the chain.

Filters must be added before the first data chunk is written into the
sink. If data has already been written when a filter is added, an
error is triggered.

	
connect_mime_type(mt: bytes) → void

	Connects parsing units to a sink for all parsers that support a given
MIME type. All subsequent write operations to the sink will pass their
data on to these parsing units. The MIME type may have wildcards for
type or subtype, and the method will then connect units for all
matching parsers.

	
connect_mime_type(mt: string) → void

	Connects parsing units to a sink for all parsers that support a given
MIME type. All subsequent write operations to the sink will pass their
data on to these parsing units. The MIME type may have wildcards for
type or subtype, and the method will then connect units for all
matching parsers.

	
gap(seq: uint<64>, len: uint<64>) → void

	Reports a gap in the input stream. seq is the sequence number of the
first byte missing, len is the length of the gap.

	
sequence_number() → uint<64>

	Returns the current sequence number of the sink’s input stream, which
is one beyond the index of the last byte that has been put in order
and delivered so far.

	
set_auto_trim(enable: bool) → void

	Enables or disables auto-trimming. If enabled (which is the default)
sink input data is trimmed automatically once in-order and processed.
See trim() for more information about trimming.

	
set_initial_sequence_number(seq: uint<64>) → void

	Sets the sink’s initial sequence number. All sequence numbers given to
other methods are then assumed to be absolute numbers beyond that
initial number. If the initial number is not set, the sink implicitly
uses zero instead.

	
set_policy(policy: enum) → void

	Sets a sink’s reassembly policy for ambiguous input. As long as data
hasn’t been trimmed, a sink will detect overlapping chunks. This
policy decides how to handle ambiguous overlaps. The default (and
currently only) policy is ReassemblerPolicy::First, which resolves
ambiguities by taking the data from the chunk that came first.

	
skip(seq: uint<64>) → void

	Skips ahead in the input stream. seq is the sequence number where to
continue parsing. If there’s still data buffered before that position
it will be ignored; if auto-skip is also active, it will be
immediately deleted as well. If new data is passed in later that comes
before seq, that will likewise be ignored. If the input stream is
currently stuck inside a gap, and seq lies beyond that gap, the
stream will resume processing at seq.

	
trim(seq: uint<64>) → void

	Deletes all data that’s still buffered internally up to seq. If
processing the input stream hasn’t reached seq yet, parsing will
also skip ahead to seq.

Trimming the input stream releases the memory, but that means that the
sink won’t be able to detect any further data mismatches.

Note that by default, auto-trimming is enabled, which means all data
is trimmed automatically once in-order and processed.

	
write(inout data: bytes, [seq: uint<64>], [len: uint<64>]) → void

	Passes data on to all connected parsing units. Multiple write calls
act like passing input in incrementally: The units will parse the
pieces as if they were a single stream of data. If no sequence number
seq is provided, the data is assumed to represent a chunk to be
appended to the current end of the input stream. If a sequence number
is provided, out-of-order data will be buffered and reassembled before
being passed on. If len is provided, the data is assumed to
represent that many bytes inside the sequence space; if not provided,
len defaults to the length of data.

If no units are connected, the call does not have any effect. If
multiple units are connected and one parsing unit throws an exception,
parsing of subsequent units does not proceed. Note that the order in
which the data is parsed to each unit is undefined.

Todo

The error semantics for multiple units aren’t great.

Operators

	
|sink| → uint<64>

	Returns the number of bytes written into the sink so far. If the sink
has filters attached, this returns the value after filtering.

	
|strong_ref<sink>| → uint<64>

	Returns the number of bytes written into the referenced sink so far.
If the sink has filters attached, this returns the value after
filtering.

Sinks provide a set of dedicated unit hooks as callbacks for the
reassembly process. These must be implemented on the reader side,
i.e., the unit that’s connected to a sink.

	
%on_gap(seq: uint64, len: uint64)

	

	
%on_overlap(seq: uint64, old: data, new: data)

	

Triggered when reassembly encounters a 2nd version of data for
sequence space already covered earlier. seq is the start of the
overlap, and old/new the previous and the new data, respectively.
This hook is just for informational purposes, the policy set with
set_policy() determines how the reassembler
handles the overlap.

	
%on_skipped(seq: uint64)

	

Any time skip() moves ahead in the input stream, this hook reports
the new sequence number seq.

	
%on_skipped(seq: uint64, data: bytes)

	

If data still buffered is skipped over through
skip(), it will be passed to this hook, before
adjusting the current position. seq is the starting sequence number
of the data, data is the data itself.

5.2.5.17. Stream

A stream is data structure that efficiently represents a
potentially large, incrementally provided input stream of raw data.
You can think of it as a bytes type that’s
optimized for (1) efficiently appending new chunks of data at the end,
and (2) trimming data no longer needed at the beginning. Other than
those two operation, stream data cannot be modified; there’s no way to
change the actual content of a stream once it has been added to it.
Streams provide iterators for traversal, and views for limiting
visibility to smaller windows into the total stream.

Streams are key to Spicy’s parsing process, although most of that
happens behind the scenes. You will most likely encounter them when
using Random access. They may also be useful for buffering
larger volumes of data during processing.

Types

	stream

	iterator<stream>

	view<stream>

Methods

	
at(i: uint<64>) → iterator<stream>

	Returns an iterator representing the offset i inside the stream
value.

	
freeze() → void

	Freezes the stream value. Once frozen, one cannot append any more data
to a frozen stream value (unless it gets unfrozen first). If the value
is already frozen, the operation does not change anything.

	
is_frozen() → bool

	Returns true if the stream value has been frozen.

	
trim(inout i: iterator<stream>) → void

	Trims the stream value by removing all data from its beginning up to
(but not including) the position i. The iterator i will remain
valid afterwards and will still point to the same location, which will
now be the beginning of the stream’s value. All existing iterators
pointing to i or beyond will remain valid and keep their offsets as
well. The effect of this operation is undefined if i does not
actually refer to a location inside the stream value. Trimming is
permitted even on frozen values.

	
unfreeze() → void

	Unfreezes the stream value. A unfrozen stream value can be further
modified. If the value is already unfrozen (which is the default), the
operation does not change anything.

Operators

	
begin(<container>) → <iterator>

	Returns an iterator to the beginning of the container’s content.

	
end(<container>) → <iterator>

	Returns an iterator to the end of the container’s content.

	
|stream| → uint<64>

	Returns the number of stream the value contains.

	
stream += bytes → stream

	Concatenates data to the stream.

	
stream += view<stream> → stream

	Concatenates another stream’s view to the target stream.

	
stream != stream → bool

	Compares two stream values lexicographically.

Iterator Methods

	
is_frozen() → bool

	Returns whether the stream value that the iterator refers to has been
frozen.

	
offset() → uint<64>

	Returns the offset of the byte that the iterator refers to relative to
the beginning of the underlying stream value.

Iterator Operators

	
*iterator<stream> → uint<64>

	Returns the character the iterator is pointing to.

	
iterator<stream> - iterator<stream> → int<64>

	Returns the number of stream between the two iterators. The result
will be negative if the second iterator points to a location before
the first. The result is undefined if the iterators do not refer to
the same stream instance.

	
iterator<stream> == iterator<stream> → bool

	Compares the two positions. The result is undefined if they are not
referring to the same stream value.

	
iterator<stream> > iterator<stream> → bool

	Compares the two positions. The result is undefined if they are not
referring to the same stream value.

	
iterator<stream> >= iterator<stream> → bool

	Compares the two positions. The result is undefined if they are not
referring to the same stream value.

	
iterator<stream>++ → iterator<stream>

	Advances the iterator by one byte, returning the previous position.

	
++iterator<stream> → iterator<stream>

	Advances the iterator by one byte, returning the new position.

	
iterator<stream> < iterator<stream> → bool

	Compares the two positions. The result is undefined if they are not
referring to the same stream value.

	
iterator<stream> <= iterator<stream> → bool

	Compares the two positions. The result is undefined if they are not
referring to the same stream value.

	
iterator<stream> + uint<64> → iterator<stream> (commutative)

	Advances the iterator by the given number of stream.

	
iterator<stream> += uint<64> → iterator<stream>

	Advances the iterator by the given number of stream.

	
iterator<stream> != iterator<stream> → bool

	Compares the two positions. The result is undefined if they are not
referring to the same stream value.

View Methods

	
advance(i: uint<64>) → view<stream>

	Advances the view’s starting position by i stream, returning the new
view.

	
advance(inout i: iterator<stream>) → view<stream>

	Advances the view’s starting position to a given iterator i,
returning the new view. The iterator must be referring to the same
stream values as the view, and it must be equal or ahead of the view’s
starting position.

	
advance_to_next_data() → view<stream>

	Advances the view’s starting position to the next non-gap position.
This always advances the input by at least one byte.

	
at(i: uint<64>) → iterator<stream>

	Returns an iterator representing the offset i inside the view.

	
find(needle: bytes) → tuple<bool, iterator<stream>>

	Searches needle inside the view’s content. Returns a tuple of a
boolean and an iterator. If needle was found, the boolean will be
true and the iterator will point to its first occurrence. If needle
was not found, the boolean will be false and the iterator will point
to the last position so that everything before that is guaranteed to
not contain even a partial match of needle (in other words: one can
trim until that position and then restart the search from there if
more data gets appended to the underlying stream value). Note that for
a simple yes/no result, you should use the in operator instead of
this method, as it’s more efficient.

	
limit(i: uint<64>) → view<stream>

	Returns a new view that keeps the current start but cuts off the end
i characters from that beginning. The returned view will not be able
to expand any further.

	
offset() → uint<64>

	Returns the offset of the view’s starting position within the
associated stream value.

	
starts_with(b: bytes) → bool

	Returns true if the view starts with b.

	
sub(begin: uint<64>, end: uint<64>) → view<stream>

	Returns a new view of the subsequence from offset begin to (but not
including) offset end. The offsets are relative to the beginning of
the view.

	
sub(inout begin: iterator<stream>, inout end: iterator<stream>) → view<stream>

	Returns a new view of the subsequence from begin up to (but not
including) end.

	
sub(inout end: iterator<stream>) → view<stream>

	Returns a new view of the subsequence from the beginning of the stream
up to (but not including) end.

View Operators

	
view<stream> == bytes → bool (commutative)

	Compares a stream view and a bytes instance lexicographically.

	
view<stream> == view<stream> → bool

	Compares the views lexicographically.

	
bytes in view<stream> → bool

	Returns true if the right-hand-side bytes contains the left-hand-side
view as a subsequence.

	
view<stream> in bytes → bool

	Returns true if the right-hand-side view contains the left-hand-side
bytes as a subsequence.

	
bytes !in view<stream> → bool

	Performs the inverse of the corresponding in operation.

	
view<stream> !in bytes → bool

	Performs the inverse of the corresponding in operation.

	
|view<stream>| → uint<64>

	Returns the number of stream the view contains.

	
view<stream> != bytes → bool (commutative)

	Compares a stream view and a bytes instance lexicographically.

	
view<stream> != view<stream> → bool

	Compares two views lexicographically.

5.2.5.18. String

Strings store readable text that’s associated with a given character
set. Internally, Spicy stores them as UTF-8.

Type

	string

Constants

	"Spicy", ""

	When specifying string constants, Spicy assumes them to be in UTF-8.

Methods

	
encode(charset: enum = hilti::Charset::UTF8) → bytes

	Converts the string into a binary representation encoded with the
given character set.

Operators

	
string == string → bool

	Compares two strings lexicographically.

	
string % <any> → string

	Renders a printf-style format string.

	
|string| → uint<64>

	Returns the number of characters the string contains.

	
string + string → string

	Returns the concatenation of two strings.

	
string != string → bool

	Compares two strings lexicographically.

5.2.5.19. Struct

A struct is a heterogeneous container of an ordered set of named values similar
to a Tuple. In contrast to tuple elements, struct fields
are mutable.

Type

	struct { IDENTIFIER_1: TYPE_1; ...; IDENTIFIER_N: TYPE_N; }

Constants

	Structs can be initialized with a struct initializer,
local my_struct: MyStruct = [$FIELD_1 = X_1, ..., $FIELD_N = X_N] where
FIELD_I is the label of the corresponding field in MyStruct’s type.

Operators

	
struct ?. <field> → bool

	Returns true if the struct’s field has a value assigned (not counting
any &default).

	
struct . <field> → <field type>

	Retrieves the value of a struct’s field. If the field does not have a
value assigned, it returns its &default expression if that has
been defined; otherwise it triggers an exception.

	
struct .? <field> → <field type>

	Retrieves the value of a struct’s field. If the field does not have a
value assigned, it returns its &default expression if that has
been defined; otherwise it signals a special non-error exception to
the host application (which will normally still lead to aborting
execution, similar to the standard dereference operator, unless the
host application specifically handles this exception differently).

	
unset struct.<field> → void

	Clears an optional field.

5.2.5.20. Time

A time value refers to a specific, absolute point of time, specified
as the interval from January 1, 1970 UT (i.e., the Unix epoch). Times
are stored with nanosecond resolution, which is retained across all
calculations.

Type

	time

Constants

	time(SECS) creates a time from an unsigned integer or real value
SECS specifying seconds since the epoch.

	time_ns(NSECS) creates a time from an unsigned integer value
NSECS specifying nanoseconds since the epoch.

Methods

	
nanoseconds() → uint<64>

	Returns the time as an integer value representing nanoseconds since
the UNIX epoch.

	
seconds() → real

	Returns the time as a real value representing seconds since the UNIX
epoch.

Operators

	
time - time → interval

	Returns the difference of the times.

	
time - interval → time

	Subtracts the interval from the time.

	
time == time → bool

	Compares two time values.

	
time > time → bool

	Compares the times.

	
time >= time → bool

	Compares the times.

	
time < time → bool

	Compares the times.

	
time <= time → bool

	Compares the times.

	
time + interval → time (commutative)

	Adds the interval to the time.

	
time != time → bool

	Compares two time values.

5.2.5.21. Tuple

Tuples are heterogeneous containers of a fixed, ordered set of types.
Tuple elements may optionally be declared and addressed with custom
identifier names. Tuple elements are immutable.

Type

	tuple<[IDENTIFIER_1:]TYPE_1, ...[IDENTIFIER_N:]TYPE_N>

Constants

	(1, "string", True), (1,), ()

	tuple(1, "string", True), tuple(1), tuple()

Operators

	
(x, ..., y)=<tuple> → <tuple>

	Assigns element-wise to the left-hand-side tuple

	
tuple == tuple → bool

	Compares two tuples element-wise.

	
tuple[uint<64>] → <type of element>

	Extracts the tuple element at the given index. The index must be a
constant unsigned integer.

	
tuple . <id> → <type of element>

	Extracts the tuple element corresponding to the given ID.

	
tuple != tuple → bool

	Compares two tuples element-wise.

5.2.5.22. Unit

Type

	unit { FIELD_1; ...; FIELD_N }

	See Parsing for a full discussion of unit types.

Constants

	Spicy doesn’t support unit constants, but you can initialize unit
instances through coercion from a struct initializer, see
Struct.

Todo

This initialization isn’t actually available in Spicy yet (#1036 [https://github.com/zeek/spicy/issues/1036]).

Methods

	
backtrack() → void

	Aborts parsing at the current position and returns back to the most
recent &try attribute. Turns into a parse error if there’s no
&try in scope.

	
connect_filter(filter: strong_ref<unit>) → void

	Connects a separate filter unit to transform the unit’s input
transparently before parsing. The filter unit will see the original
input, and this unit will receive everything the filter passes on
through forward().

Filters can be connected only before a unit’s parsing begins. The
latest possible point is from inside the target unit’s %init hook.

	
context() → <context>&

	Returns a reference to the %context instance associated with the
unit.

	
find(needle: bytes, [dir: enum], [start: iterator<stream>]) → optional<iterator<stream>>

	Searches a needle pattern inside the input region defined by where
the unit began parsing and its current parsing position. If executed
from inside a field hook, the current parasing position will represent
the first byte that the field has been parsed from. By default, the
search will start at the beginning of that region and scan forward. If
the direction is spicy::Direcction::Backward, the search will
start at the end of the region and scan backward. In either case, a
starting position can also be explicitly given, but must lie inside
the same region.

	
forward(inout data: bytes) → void

	If the unit is connected as a filter to another one, this method
forwards transformed input over to that other one to parse. If the
unit is not connected, this method will silently discard the data.

	
forward_eod() → void

	If the unit is connected as a filter to another one, this method
signals that other one that end of its input has been reached. If the
unit is not connected, this method will not do anything.

	
input() → iterator<stream>

	Returns an iterator referring to the input location where the current
unit has begun parsing. If this method is called before the units
parsing has begun, it will throw a runtime exception. Once available,
the input position will remain accessible for the unit’s entire life
time.

	
offset() → uint<64>

	Returns the offset of the current location in the input stream
relative to the unit’s start. If executed from inside a field hook,
the offset will represent the first byte that the field has been
parsed from. If this method is called before the unit’s parsing has
begun, it will throw a runtime exception. Once parsing has started,
the offset will remain available for the unit’s entire life time.

	
position() → iterator<stream>

	Returns an iterator to the current position in the unit’s input
stream. If executed from inside a field hook, the position will
represent the first byte that the field has been parsed from. If this
method is called before the unit’s parsing has begun, it will throw a
runtime exception.

	
set_input(i: iterator<stream>) → void

	Moves the current parsing position to i. The iterator i must be
into the input of the current unit, or the method will throw a runtime
exception.

Operators

	
unit ?. <field> → bool

	Returns true if the unit’s field has a value assigned (not counting
any &default).

	
unit . <field> → <field type>

	Retrieves the value of a unit’s field. If the field does not have a
value assigned, it returns its &default expression if that has
been defined; otherwise it triggers an exception.

	
unit .? <field> → <field type>

	Retrieves the value of a unit’s field. If the field does not have a
value assigned, it returns its &default expression if that has
been defined; otherwise it signals a special non-error exception to
the host application (which will normally still lead to aborting
execution, similar to the standard dereference operator, unless the
host application specifically handles this exception differently).

	
unset unit.<field> → void

	Clears an optional field.

5.2.5.23. Vector

Vectors are homogeneous containers, holding a set of elements of a
given element type. They provide iterators to traverse their content.

Types

	vector<T> specifies a vector with elements of type T.

	iterator<vector<T>>

Constants

	vector(E_1, E_2, ..., E_N) creates a vector of N elements.
The values E_I must all have the same type. vector() creates
an empty vector of unknown element type; this cannot be used
directly but must be coerced into a fully-defined vector type first.

	vector<T>(E_1, E_2, ..., E_N) creates a vector of type T,
initializing it with the N elements E_I. vector<T>() creates
an empty vector.

	Vectors can be initialized through coercion from a list value:
vector<string> I = ["A", "B", "C"].

Methods

	
assign(i: uint<64>, x: <any>) → void

	Assigns x to the i*th element of the vector. If the vector contains
less than *i elements a sufficient number of default-initialized
elements is added to carry out the assignment.

	
at(i: uint<64>) → <iterator>

	Returns an iterator referring to the element at vector index i.

	
back() → <type of element>

	Returns the last element of the vector. It throws an exception if the
vector is empty.

	
front() → <type of element>

	Returns the first element of the vector. It throws an exception if the
vector is empty.

	
pop_back() → void

	Removes the last element from the vector, which must be non-empty.

	
push_back(x: <any>) → void

	Appends x to the end of the vector.

	
reserve(n: uint<64>) → void

	Reserves space for at least n elements. This operation does not
change the vector in any observable way but provides a hint about the
size that will be needed.

	
resize(n: uint<64>) → void

	Resizes the vector to hold exactly n elements. If n is larger than
the current size, the new slots are filled with default values. If n
is smaller than the current size, the excessive elements are removed.

	
sub(begin: uint<64>, end: uint<64>) → vector

	Extracts a subsequence of vector elements spanning from index begin
to (but not including) index end.

	
sub(end: uint<64>) → vector

	Extracts a subsequence of vector elements spanning from the beginning
to (but not including) the index end as a new vector.

Operators

	
begin(<container>) → <iterator>

	Returns an iterator to the beginning of the container’s content.

	
end(<container>) → <iterator>

	Returns an iterator to the end of the container’s content.

	
vector == vector → bool

	Compares two vectors element-wise.

	
vector[uint<64>] → <type of element>

	Returns the vector element at the given index.

	
|vector| → uint<64>

	Returns the number of elements a vector contains.

	
vector + vector → vector

	Returns the concatenation of two vectors.

	
vector += vector → vector

	Concatenates another vector to the vector.

	
vector != vector → bool

	Compares two vectors element-wise.

Iterator Operators

	
*iterator<vector> → <dereferenced type>

	Returns the vector element that the iterator refers to.

	
iterator<vector> == iterator<vector> → bool

	Returns true if two vector iterators refer to the same location.

	
iterator<vector>++ → iterator<vector>

	Advances the iterator by one vector element, returning the previous
position.

	
++iterator<vector> → iterator<vector>

	Advances the iterator by one vector element, returning the new
position.

	
iterator<vector> != iterator<vector> → bool

	Returns true if two vector iterators refer to different locations.

5.2.5.24. Void

The void type is place holder for specifying “no type”, such as when a
function doesn’t return anything.

Type

	void

5.2.6. Statements

Most of Spicy’s statements are pretty standard stuff. We summarize
them briefly in the following.

5.2.6.1. assert

assert EXPR;

assert EXPR : MSG;

Ensures at runtime that EXPR evaluates to a True value. If it
doesn’t, an exception gets thrown that will typically abort execution.
EXPR must either be of boolean type to begin with, or support
coercion into it. If MSG is specified, it must be a string and
will be carried along with the exception.

5.2.6.2. break

break;

Inside a for or while loop,
break aborts the loop’s body, with execution then continuing
right after the loop construct.

5.2.6.3. confirm

confirm;

If the parser is currently in trial mode, confirm that the unit is successfully
synchronized to the input; the unit is then put into regular parsing mode
again. If the unit is not in trial mode confirm has no effect.

See reject to reject the synchronization instead.

confirm can only be invoked from hooks.

5.2.6.4. for

for (ID in ITERABLE)
 BLOCK

Loops over all the elements of an iterable value. ID is an
identifier that will become local variable inside BLOCK, with the
current loop element assigned on each round. ITERABLE is a value
of any type that provides iterators.

Examples:

module Test;

for (i in [1, 2, 3])
 print i;

for (i in b"abc") {
 print i;
}

local v = vector("a", "b", "c");

for (i in v)
 print i;

spicyc -j for.spicy
1
2
3
97
98
99
a
b
c

5.2.6.5. if

if (EXPR)
 BLOCK

if (EXPR)
 BLOCK
else
 BLOCK

A classic if-statement branching based on a boolean expression
EXPR.

5.2.6.6. import

import MODULE;

Makes the content of another module available, see Modules for
more.

5.2.6.7. print

print EXPR;

print EXPR_1, ..., EXPR_N;

Prints one or more expressions to standard output. This is supported
for expressions of any type, with each type knowing how to render its
values into a readable representation. If multiple expressions are
specified, commas will separate them in the output.

Note

A particular use-case combines print with string interpolation
(i.e., string::Modulo):

module Test;

print "Hello, %s!" % "World";
print "%s=%d" % ("x", 1);

spicyc -j print.spicy
Hello, World!
x=1

5.2.6.8. reject

reject;

If the parse is currently in trial mode, reject the synchronization; this
immediately fails parsing of the unit and raises the parse error which caused
the unit to be put into trial mode. If the unit is not in trial mode this
triggers a generic parse error.

See confirm to confirm the synchronization instead.

reject can only be invoked from hooks.

5.2.6.9. return

return;

return EXPR;

Inside a function or hook, return yields control back to the
caller. If it’s a function with a non-void return value, the
return must provide a corresponding EXPR.

5.2.6.10. stop

stop;

Inside a foreach container hook (see here), aborts
the parsing loop without adding the current (final) value to the
container.

5.2.6.11. switch

switch ([local IDENT =] CTRL_EXPR) {
 case EXPR [, ..., EXPR]:
 BLOCK;

 ...

 case EXPR [, ..., EXPR]:
 BLOCK;

 [default:
 BLOCK]
}

Branches across a set of alternatives based on the value of an control
expression. CTRL_EXPR is compared against all the case
expressions through the type’s equality operator, coercing
CTRL_EXPR accordingly first where necessary. If local IDENT is
specified, the blocks have access to a corresponding local variable
that holds the value of the control expression. If no default is
given, the runtime will throw an UnhandledSwitchCase exception if
there’s no matching case.

Note

Don’t confuse the switch statement with the unit type’s
switch parsing construct. They look similar,
but do different things.

5.2.6.12. throw

throw EXPR;

Triggers a parse error exception with the message indicated by EXPR. EXPR needs
to be a String. throw aborts parsing.

5.2.6.13. try/catch

Todo

This isn’t available in Spicy yet (#89 [https://github.com/zeek/spicy/issues/89]).

try
 BLOCK

catch [(TYPE IDENT)]
 BLOCK

...

catch [(TYPE IDENT)]
 BLOCK

Catches any exception thrown in the try block that match one of
the types in any of catch headers, which must be
Exception types. A catch without a type matches any
exception. If no catch matches an exception thrown in the try
block, it’ll be propagated further up the stack. A bare throw
statement can be used inside a catch block to rethrow the current
exception.

5.2.6.14. while

while (COND)
 BLOCK

while (local IDENT = EXPR; COND)
 BLOCK

while introduces a loop that executes BLOCK for as long as the
boolean COND evaluates to true. The second form initializes a new
local variable IDENT with EXPR, and makes it available inside
both COND and BLOCK.

5.2.7. Error Handling

Todo

Spicy’s error handling remains quite limited at this point, with
more to come here in the future.

Exceptions

Exceptions provide Spicy’s primary mechanism for reporting errors.
Currently, various parts of the runtime system throw exceptions if
they encounter unexpected situations. In particular, the generated
parsers throw ParsingError exceptions if they find themselves
unable to comprehend their input. However, the support for catching
and handling exception is remains minimal at the moment. For now, only
ParsingError exceptions can be caught indirectly through the
%on_error unit hook, which internally is nothing
else than an exception handler.

Todo

Support for catching other exception throughs try/catch
needs to be added still (#89 [https://github.com/zeek/spicy/issues/89]).

result<T> / error

Todo

Spicy doesn’t have result/error yet (#90 [https://github.com/zeek/spicy/issues/90]).

Error recovery

Support for resynchronizing parser with their input stream after parse errors
is discussed in the section on error recovery.

5.2.8. Conditional Compilation

Spicy scripts offer a basic form of conditional compilation through
@if/@else/@endif blocks, similar to a C preprocessor. For
now, this supports only a couple types of conditions that are useful
for feature and version testing. For example, the following
@if/@else block branches to different code based on the Spicy
version:

@if SPICY_VERSION < 10000
 <code for Spicy versions older than 1.0>
@else
 <code for Spicy versions equal or newer than 1.0>
@endif

@if directives can take one of the following forms:

	@if [!] IDENTIFIER OPERATOR VALUE
	Compares the value of IDENTIFIER against VALUE.
Supported comparison operators are ==, !=, <,
<=, >, >=. See below for valid identifiers. If an
identifier is not defined, its value is assumed to be
zero.

	@if [!] IDENTIFIER
	This is a shortcut for @if [!] IDENTIFIER != 0.

By default, Spicy currently provides just one pre-defined identifier:

	SPICY_VERSION
	The current Spicy version in numerical format (e.g., 10000 for
version 1.0; see the output of spicy-config --version-number).

The Spicy plugin for Zeek defines a couple of additional
identifiers.

5.2.9. Appendix

5.2.9.1. Reserved Keywords

The following is a list of keywords reserved by the Spicy language.
They cannot be used as identifiers.

False
None
Null
True
__library_type
add
addr
any
assert
assert-exception
attribute
begin
bitfield
bool
break
bytes
case
cast
catch
confirm
const
const_iterator
constant
continue
cregexp
cstring
default
delete
else
end
enum
exception
export
file
for
foreach
from
function
global
ident
if
import
in
inout
int16
int32
int64
int8
interval
interval_ns
iterator
list
local
map
mark
mod
module
net
new
object
on
optional
port
print
priority
private
property
public
real
regexp
reject
return
set
sink
stop
stream
string
struct
switch
throw
time
time_ns
timer
try
tuple
type
uint16
uint32
uint64
uint8
unit
unset
var
vector
view
void
while

5.3. Library

5.3.1. Module spicy

5.3.1.1. Types

spicy::AddressFamily

Specifies an address’ IP family.

type AddressFamily = enum {
 IPv4, # IP4 address
 IPv6 # IPv6 address
};

spicy::Base64Stream

Captures the state of base64 encoding/decoding for the corresponding library functions.

spicy::BitOrder

Specifies the bit order for individual bit ranges inside a bitfield.

type BitOrder = enum {
 LSB0, # bits are interpreted as lowest-significant-bit coming first
 MSB0 # bits are interpreted as most-significant-bit coming first
};

spicy::ByteOrder

Specifies byte order for data operations.

type ByteOrder = enum {
 Little, # data is in little-endian byte order
 Big, # data is in big-endian byte order
 Network, # data is in network byte order (same a big endian)
 Host # data is in byte order of the host we are executing on
};

spicy::Charset

Specifies the character set for bytes encoding/decoding.

type Charset = enum {
 ASCII,
 UTF8
};

spicy::MatchState

Captures state for incremental regular expression matching.

spicy::Protocol

Specifies a transport-layer protocol.

type Protocol = enum {
 TCP,
 UDP,
 ICMP
};

spicy::RealType

Specifies the type of a real value.

type RealType = enum {
 IEEE754_Single, # single precision in IEEE754 format
 IEEE754_Double # double precision in IEEE754 format
};

spicy::ReassemblerPolicy

Specifies the policy for a sink’s reassembler when encountering overlapping data.

type ReassemblerPolicy = enum {
 First # take the original data & discard the new data
};

spicy::Side

Specifies a side an operation should operate on.

type Side = enum {
 Left, # operate on left side
 Right, # operate on right side
 Both # operate on both sides
};

spicy::Direction

Specifies direction of a search.

type Direction = enum {
 Forward, # search forward
 Backward, # search backward
};

spicy::ZlibStream

Captures the state of gzip decompression for the corresponding library functions.

5.3.1.2. Functions

function spicy::zlib_init(window_bits: int64) : ZlibStream

Initializes a zlib stream for decompression.

window_bits: Same as the corresponding parameter for zlib’s inflateInit2
(see https://www.zlib.net/manual.html).

Will throw a ZlibError exception if initialization fails.

function spicy::zlib_decompress(inout stream_: ZlibStream, data: bytes) : bytes

Decompresses a chunk of data through the given zlib stream.

function spicy::zlib_finish(inout stream_: ZlibStream) : bytes

Finalizes a zlib stream used for decompression.

function spicy::base64_encode(inout stream_: Base64Stream, data: bytes) : bytes

Encodes a stream of data into base64.

function spicy::base64_decode(inout stream_: Base64Stream, data: bytes) : bytes

Decodes a stream of base64 data back into the clear.

function spicy::base64_finish(inout stream_: Base64Stream) : bytes

Finalizes a base64 stream used for decoding or encoding.

function spicy::crc32_init() : uint64

Returns the initialization value for CRC32 computation.

function spicy::crc32_add(crc: uint64, data: bytes) : uint64

Computes a running CRC32.

function spicy::current_time() : time

Returns the current wall clock time.

function spicy::mktime(y: uint64, m: uint64, d: uint64, H: uint64, M: uint64, S: uint64) : time

Constructs a time value from a tuple of broken-out elements specifying local time.

	y: year (1970-…)

	m: month (1-12)

	d: day (1-31)

	H: hour (0-23)

	M: minute (0-59)

	S: second (0-59)

function spicy::bytes_to_hexstring(value: bytes) : string

Returns a bytes value rendered as a hex string.

function spicy::getenv(name: string) : optional<string>

Returns the value of an environment variable, if set.

function spicy::strftime(format: string, timestamp: time) : string

Formats a time according to user-specified format string.

This function uses the currently active locale and timezone to format
values. Formatted strings cannot exceed 128 bytes.

The format string can contain format specifiers supported by POSIX strftime, see
https://pubs.opengroup.org/onlinepubs/009695399/functions/strftime.html.

This function can raise InvalidArgument if the timestamp could not be
converted to local time or formatted.

function spicy::strptime(buf: string, format: string) : time

Parse time from string.

This function uses the currently active locale and timezone to parse values.

The format string can contain format specifiers supported by POSIX strptime, see
https://pubs.opengroup.org/onlinepubs/009695399/functions/strptime.html.

This function raises InvalidArgument if the string could not be parsed
with the given format string, or OutOfRange if the parsed time value cannot
be represented.

5.3.2. Module filter

5.3.2.1. Types

spicy::Zlib

A filter that performs zlib decompression.

type Zlib = unit;

spicy::Base64Decode

A filter that performs Base64 decoding.

type Base64Decode = unit;

5.4. Examples

We collect some example Spicy parsers here that come with a growing collection
of Spicy-based Zeek analyzers [https://github.com/zeek/spicy-analyzers].
Check out that package and its dependencies [https://github.com/zeek/spicy-analyzers/blob/main/zkg.meta] for more
examples.

TFTP

A TFTP analyzer for Zeek, implementing the original RFC 1350 protocol
(no extensions). It comes with a Zeek script producing a typical
tftp.log log file.

This analyzer is a good introductory example because the Spicy side is
pretty straight-forward. The Zeek-side logging is more tricky because
of the data transfer happening over a separate network session.

	TFTP Spicy grammar [https://github.com/zeek/spicy-tftp/blob/main/analyzer/analyzer.spicy]

	Spicy code for TFTP analyzer Zeek integration [https://github.com/zeek/spicy-tftp/blob/main/analyzer/zeek_analyzer.spicy]

	TFTP Zeek analyzer definition (EVT) [https://github.com/zeek/spicy-tftp/blob/main/analyzer/analyzer.evt]

	Zeek TFTP script for logging [https://github.com/zeek/spicy-tftp/blob/main/analyzer/main.zeek]

HTTP

A nearly complete HTTP parser. This parser was used with the original
Spicy prototype to compare output with Zeek’s native handwritten HTTP
parser. We observed only negligible differences.

	HTTP Spicy grammar [https://github.com/zeek/spicy-http/blob/main/analyzer/analyzer.spicy]

	Spicy code for HTTP analyzer Zeek integration [https://github.com/zeek/spicy-http/blob/main/analyzer/zeek_analyzer.spicy]

	HTTP Zeek analyzer definition (EVT) [https://github.com/zeek/spicy-http/blob/main/analyzer/analyzer.evt]

DNS

A comprehensive DNS parser. This parser was used with the original
Spicy prototype to compare output with Zeek’s native handwritten DNS
parser. We observed only negligible differences.

The DNS parser is a good example of using random access.

	DNS Spicy grammar [https://github.com/zeek/spicy-dns/blob/main/analyzer/analyzer.spicy]

	Spicy code for DNS analyzer Zeek integration [https://github.com/zeek/spicy-dns/blob/main/analyzer/zeek_analyzer.spicy]

	DNS Zeek analyzer definition (EVT) [https://github.com/zeek/spicy-dns/blob/main/analyzer/analyzer.evt]

DHCP

A nearly complete DHCP parser. This parser extracts most DHCP option
messages understood by Zeek. The Zeek integration is almost direct and
most of the work is in formulating the parser itself.

	DHCP Spicy grammar [https://github.com/zeek/spicy-dhcp/blob/main/analyzer/analyzer.spicy]

	Spicy code for DHCP analyzer Zeek integration [https://github.com/zeek/spicy-dhcp/blob/main/analyzer/zeek_analyzer.spicy]

	DHCP analyzer Zeek analyzer definition (EVT) [https://github.com/zeek/spicy-dhcp/blob/main/analyzer/analyzer.evt]

5.5. Debugging

It can be challenging to track down the specifics of what a parser is
doing (or not doing) because often there’s no directly observable
effect. To make that easier, Spicy comes with debugging support that
helps during parser development.

Generally, debugging support requires running spicyc or
spicy-driver with option -d; that enables generating debug
versions of the generated C++ code. In addition, the option -X
<tag> may enable additional, more expensive debug instrumentation,
as discussed below. Any use of -X implicitly turns on -d.

5.5.1. Debug Hooks

The simplest way to learn more about what’s going on is to add hooks
with print statements to your grammar. That’s rather disruptive
though, and hence there are also special %debug unit hooks which
only get compiled into the resulting code if spicy-driver is run
with debugging enabled (-d):

module Test;

public type test = unit {
 a: /1234/ %debug {
 print self.a;
 }

 b: /567890/;

 on b %debug { print self.b; }
};

printf "1234567890" | spicy-driver -d debugging.spicy
1234
567890

printf "1234567890" | spicy-driver debugging.spicy

5.5.2. Debug Streams

A second form of debugging support uses runtime debug streams that
instrument the generated parsers to log activity as they are parsing
their input. If you run spicy-driver with -d, you can set the
environment variable HILTI_DEBUG to a set of debug stream names to
select the desired information (see below for the list). Execution
will then print debug information to standard error:

> echo "GET /index.html HTTP/1.0" | HILTI_DEBUG=spicy spicy-driver -d http-request.spicy
[spicy] Request::RequestLine
[spicy] method = GET
[spicy] anon_2 =
[spicy] uri = /index.html
[spicy] anon_3 =
[spicy] Request::Version
[spicy] anon = HTTP/
[spicy] number = 1.0
[spicy] version = [$anon=b"HTTP/", $number=b"1.0"]
[spicy] anon_4 = \n
GET, /index.html, 1.0

The available debug streams include:

	spicy
	Logs unit fields and variables as they receive values. This is
often the most helpful output as it shows rather concisely what
the parser is doing, and in particular how far it gets in cases
where it doesn’t parse something correctly.

	spicy-verbose
	Logs various internals about the parsing process, including the
grammar rules currently being parsed, the current input, and lexer
tokens.

This stream is primarily intended for debugging the Spicy compiler
itself, but it can be helpful also in particular for understanding
the data that remains to be parsed.

	hilti-trace
	This is a HILTI-level debug stream that records every HILTI
instruction being executed. To use this, you need to run
spicy-driver with -X trace.

This stream is primarily intended for debugging the Spicy
compiler itself.

	hilti-flow
	This is a HILTI-level debug level recording flow information like
function calls. To use this, you need to run spicy-driver with
-X flow.

This stream is primarily intended for debugging the Spicy compiler
itself, although it may also be helpful to understand the internal
control flow when writing a grammar.

Multiple streams can be enabled by separating them with colons.

5.5.3. Exceptions

When encountering runtime errors, Spicy by default triggers C++
exceptions that bubble up back to the host application. If not handled
there, execution will stop. For debugging, you can also let the Spicy
runtime system abort() with a core dump, instead of throwing an
exception, by running spicy-driver with --abort-on-exceptions.
That especially helps inside a debugger.

If in addition you specify --show-backtraces as well, it will
print a stack trace before aborting (assuming support for that is
available on your platform).

5.5.4. Inspecting Generated Code

Using spicyc you can inspect the code that’s being generated for a
given Spicy grammar:

	spicyc -p outputs the intermediary HILTI code. The code tends to
be pretty intuitively readable. Even if you don’t know all the
specifics of HILTI, much of the code is rather close to Spicy
itself. (Per above, you can trace the generated
HILTI code as it executes by activating the hilti-trace debug
stream).

	spicyc -c outputs the final C++ code. If you add -L, the
output will also include additional code generated by HILTI’s
linker (which enables cross-module functionality).

	When JITing a grammar with spicyc -j, running with -D
dump-code will record all generated intermediary code (HILTI code,
C++ code, object files) into files dbg.* inside the current
directory.

5.5.5. Skipping validation

When working on the Spicy code, it can be helpful to disable internal
validation of generated HILTI code with -V. That way, one can
often still see the HILTI code even if it’s malformed. Note, however,
that Spicy may end up crashing if broken HILTI code gets passed into
later stages.

6. Toolchain

6.1. spicy-build

spicy-build is a shell frontend that compiles Spicy source code
into a standalone executable by running spicyc to generate the
necessary C++ code, then spawning the system compiler to compile and
link that.

spicy-build [options] <input files>

 -d Build a debug version.
 -o <file> Destination name for the compiled executable; default is "a.out".
 -t Do not delete tmp files (useful for inspecting, and use with debugger)
 -v Verbose output, display command lines executing.
 -S Do not compile the "spicy-driver" host application into executable.

Input files may be anything that spicyc can compile to C++.

6.2. spicy-config

spicy-config reports information about Spicy’s build &
installation options.

Usage: spicy-config [options]

Available options:

 --bindir Prints the path to the directory where binaries are installed.
 --build Prints "debug" or "release", depending on the build configuration.
 --cmake-path Prints the path to Spicy-provided CMake modules
 --cxx Print the path to the C++ compiler used to build Spicy
 --cxxflags Print flags for C++ compiler when compiling generated code statically
 --cxxflags-hlto Print flags for C++ compiler when building precompiled HLTO libraries
 --debug Output flags for working with debugging versions.
 --distbase Print path of the Spicy source distribution.
 --dynamic-loading Adjust --ldflags for host applications that dynamically load precompiled modules
 --have-toolchain Prints 'yes' if the Spicy toolchain was built, 'no' otherwise.
 --have-zeek Prints 'yes' if the Spicy was compiled with Zeek support, 'no' otherwise.
 --help Print this usage summary
 --include-dirs Prints the Spicy runtime's C++ include directories
 --ldflags Print flags for linker when compiling generated code statically
 --ldflags-hlto Print flags for linker linker when building precompiled HLTO libraries
 --libdirs Print standard Spicy library directories.
 --prefix Print path of installation
 --spicy-build Print the path to the spicy-build script.
 --spicyc Print the path to the spicyc binary.
 --version Print the Spicy version as a string.
 --version-number Print the Spicy version as a numerical value.
 --zeek Print the path to the Zeek executable
 --zeek-include-dirs Print the Spicy runtime's C++ include directories
 --zeek-module-path Print the path of the directory the Zeek plugin searches for *.hlto modules
 --zeek-plugin-path Print the path to go into ZEEK_PLUGIN_PATH for enabling the Zeek Spicy plugin
 --zeek-prefix Print the path to the Zeek installation prefix
 --zeek-version Print the Zeek version (empty if no Zeek available)
 --zeek-version-number Print the Zeek version as a numerical value (zero if no Zeek available)

6.3. spicyc

spicyc compiles Spicy code into C++ output, optionally also
executing it directly through JIT.

Usage: spicyc [options] <inputs>

Options controlling code generation:

 -c | --output-c++ Print out all generated C++ code (including linker glue by default).
 -d | --debug Include debug instrumentation into generated code.
 -e | --output-all-dependencies Output list of dependencies for all compiled modules.
 -j | --jit-code Fully compile all code, and then execute it unless --output-to gives a file to store it
 -l | --output-linker Print out only generated HILTI linker glue code.
 -o | --output-to <path> Path for saving output.
 -p | --output-hilti Just output parsed HILTI code again.
 -v | --version Print version information.
 -A | --abort-on-exceptions When executing compiled code, abort() instead of throwing HILTI exceptions.
 -B | --show-backtraces Include backtraces when reporting unhandled exceptions.
 -C | --dump-code Dump all generated code to disk for debugging.
 -D | --compiler-debug <streams> Activate compile-time debugging output for given debug streams (comma-separated; 'help' for list).
 -E | --output-code-dependencies Output list of dependencies for all compiled modules that require separate compilation of their own.
 -L | --library-path <path> Add path to list of directories to search when importing modules.
 -O | --optimize Build optimized release version of generated code.
 -P | --output-prototypes Output C++ header with prototypes for public functionality.
 -R | --report-times Report a break-down of compiler's execution time.
 -S | --skip-dependencies Do not automatically compile dependencies during JIT.
 -T | --keep-tmps Do not delete any temporary files created.
 -V | --skip-validation Don't validate ASTs (for debugging only).
 -X | --debug-addl <addl> Implies -d and adds selected additional instrumentation (comma-separated; see 'help' for list).

 -Q | --include-offsets Include stream offsets of parsed data in output.

Inputs can be .hlt, .spicy, .cc/.cxx, *.hlto.

spicyc also supports the following environment variables to
control the compilation process:

SPICY_PATH
Replaces the built-in search path for *.spicy source files.

	SPICY_CACHE
	Location for storing precompiled C++ headers. Default is ~/.cache/spicy/<VERSION>.

	HILTI_CXX
	Specifies the path to the C++ compiler to use.

	HILTI_CXX_COMPILER_LAUNCHER
	Specifies a command to prefix compiler invocations with during JIT.
This can e.g., be used to use a compiler cache like
ccache [https://ccache.dev/]. If Spicy was configured with e.g.,
--with-hilti-compiler-launcher=ccache (the equivalent CMake option
is HILTI_COMPILER_LAUNCHER) ccache would automatically be used
during JIT. Setting this variable to an empty value disables use of
ccache in that case.

	HILTI_CXX_INCLUDE_DIRS
	Specified additional, colon-separated C++ include directory to
search for header files.

	HILTI_JIT_SEQUENTIAL
	Set to prevent spawning multiple concurrent C++ compiler instances.

	HILTI_OPTIMIZER_PASSES
	Colon-separated list of optimizer passes to activate. If unset uses the
default-enabled set.

	HILTI_PATH
	Replaces the built-in search path for *.hlt source files.

	HILTI_PRINT_SETTINGS
	Set to see summary of compilation options.

6.4. spicy-driver

spicy-driver is a standalone Spicy host application that compiles
and executes Spicy parsers on the fly, and then feeds them data for
parsing from standard input.

Usage: cat <data> | spicy-driver [options] <inputs> ...

Options:

 -d | --debug Include debug instrumentation into generated code.
 -i | --increment <i> Feed data incrementally in chunks of size n.
 -f | --file <path> Read input from <path> instead of stdin.
 -l | --list-parsers List available parsers and exit.
 -p | --parser <name> Use parser <name> to process input. Only neeeded if more than one parser is available.
 -v | --version Print version information.
 -A | --abort-on-exceptions When executing compiled code, abort() instead of throwing HILTI exceptions.
 -B | --show-backtraces Include backtraces when reporting unhandled exceptions.
 -D | --compiler-debug <streams> Activate compile-time debugging output for given debug streams (comma-separated; 'help' for list).
 -F | --batch-file <path> Read Spicy batch input from <path>; see docs for description of format.
 -L | --library-path <path> Add path to list of directories to search when importing modules.
 -O | --optimize Build optimized release version of generated code.
 -R | --report-times Report a break-down of compiler's execution time.
 -S | --skip-dependencies Do not automatically compile dependencies during JIT.
 -U | --report-resource-usage Print summary of runtime resource usage.
 -X | --debug-addl <addl> Implies -d and adds selected additional instrumentation (comma-separated; see 'help' for list).

Environment variables:

 SPICY_PATH Colon-separated list of directories to search for modules. In contrast to --library-paths using this flag overwrites builtin paths.

Inputs can be .hlt, .spicy, .cc/.cxx, *.o, *.hlto.

spicy-driver supports the same environment variables as
spicyc.

6.4.1. Specifying the parser to use

If there’s only single public unit in the Spicy source code,
spicy-driver will automatically use that for parsing its input. If
there’s more than one public unit, you need to tell spicy-driver
which one to use through its --parser (or -p) option. To see
the parsers that are available, use --list-parsers (or -l).

In addition to the names shown by --list-parsers, you can also
specify a parser through a port or MIME type if the corresponding unit
defines them through properties. For example,
if a unit defines %port = 80/tcp, you can use spicy-driver -p
80/tcp to select it. To specify a direction, add either %orig or
%resp (e.g., -p 80/tcp%resp); then only units with a port
tagged with an &originator or &responder attribute,
respectively, will be considered. If a unit defines %mime-type =
application/test, you can select it through spicy-driver -p
application/test. (Note that there must be exactly one unit with a
matching property for this all to work, otherwise you’ll get an error
message.)

6.4.2. Batch input

spicy-driver provides a batch input mode for processing multiple
interleaved input flows in parallel, mimicking how host applications
like Zeek would be employing Spicy parsers for processing many
sessions concurrently. The batch input must be prepared in a specific
format (see below) that provides embedded meta information about the
contained flows of input. The easiest way to generate such a batch
is a Zeek script coming with Spicy. If you run Zeek with this script
on a PCAP trace, it will record the contained TCP and UDP sessions
into a Spicy batch file:

zeek -b -r http/methods.trace record-spicy-batch.zeek
tracking [orig_h=128.2.6.136, orig_p=46562/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
tracking [orig_h=128.2.6.136, orig_p=46563/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
tracking [orig_h=128.2.6.136, orig_p=46564/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
tracking [orig_h=128.2.6.136, orig_p=46565/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
tracking [orig_h=128.2.6.136, orig_p=46566/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
tracking [orig_h=128.2.6.136, orig_p=46567/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
[...]
tracking [orig_h=128.2.6.136, orig_p=46608/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
tracking [orig_h=128.2.6.136, orig_p=46609/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
tracking [orig_h=128.2.6.136, orig_p=46610/tcp, resp_h=173.194.75.103, resp_p=80/tcp]
recorded 49 sessions total
output in batch.dat

You will now have a file batch.dat that you can use with
spicy-driver -F batch.data

The batch created by the Zeek script will select parsers for the
contained sessions through well-known ports. That means your units
need to have a %port property matching the responder port of the
sessions you want them to parse. So for the HTTP trace above, our
Spicy source code would need to provide a public unit with property
%port = 80/tcp;.

In case you want to create batches yourself, we document the batch
format in the following. A batch needs to start with a line
!spicy-batch v2<NL>, followed by lines with commands of the form
@<tag> <arguments><NL>.

There are two types of input that the batch format can represent: (1)
individual, uni-directional flows; and (2) bi-directional connections
consisting in turn of one flow per side. The type is determined
through an initial command: @begin-flow starts a flow flow, and
@begin-conn starts a connection. Either form introduces a unique,
free-form ID that subsequent commands will then refer to. The
following commands are supported:

	@begin-flow FID TYPE PARSER<NL>
	Initializes a new input flow for parsing, associating the unique
ID FID with it. TYPE must be either stream for
stream-based parsing (think: TCP), or block for parsing each
data block independent of others (think: UDP). PARSER is the
name of the Spicy parser to use for parsing this input flow,
given in the same form as with spicy-driver’s --parser
option (i.e., either as a unit name, a %port, or a
%mime-type).

	@begin-conn CID TYPE ORIG_FID ORIG_PARSER RESP_FID RESP_PARSER<NL>
	Initializes a new input connection for parsing, associating the
unique connection ID CID with it. TYPE must be either
stream for stream-based parsing (think: TCP), or block for
parsing each data block independent of others (think: UDP).
ORIG_FID is separate unique ID for the originator-side flow,
and ORIG_PARSER is the name of the Spicy parser to use for
parsing that flow. RESP_FID and RESP_PARSER work
accordingly for the responder-side flow. The parsers can be given
in the same form as with spicy-driver’s --parser option
(i.e., either as a unit name, a %port, or a %mime-type).

	@data FID SIZE<NL>
	A block of data for the input flow FID. This command must be
followed directly by binary data of length SIZE, plus a final
newline character. The data represents the next chunk of input for
the corresponding flow. @data can be used only inside
corresponding @begin-* and @end-* commands bracketing the
flow ID.

	@end-flow FID<NL>
	Finalizes parsing of the input flow associated with FID,
releasing all state. This must come only after a corresponding
@begin-flow command, and every @begin-flow must eventually
be followed by an @end-flow.

	@end-conn CID<NL>
	Finalizes parsing the input connection associated with CID,
releasing all state (including for its two flows). This must come
only after a corresponding @begin-conn command, and every
@begin-conn must eventually be followed by an @end-end.

6.5. spicy-dump

spicy-dump is a standalone Spicy host application that compiles
and executes Spicy parsers on the fly, feeds them data for processing,
and then at the end prints out the parsed information in either a
readable, custom ASCII format, or as JSON (--json or -J). By
default, spicy-dump disables showing the output of Spicy print
statements, --enable-print or -P reenables that.

Usage: cat <data> | spicy-dump [options] <inputs> ...

Options:

 -d | --debug Include debug instrumentation into generated code.
 -f | --file <path> Read input from <path> instead of stdin.
 -l | --list-parsers List available parsers and exit.
 -p | --parser <name> Use parser <name> to process input. Only neeeded if more than one parser is available.
 -v | --version Print version information.
 -A | --abort-on-exceptions When executing compiled code, abort() instead of throwing HILTI exceptions.
 -B | --show-backtraces Include backtraces when reporting unhandled exceptions.
 -D | --compiler-debug <streams> Activate compile-time debugging output for given debug streams (comma-separated; 'help' for list).
 -L | --library-path <path> Add path to list of directories to search when importing modules.
 -J | --json Print JSON output.
 -O | --optimize Build optimized release version of generated code.
 -P | --enable-print Show output of Spicy 'print' statements (default: off).
 -Q | --include-offsets Include stream offsets of parsed data in output.
 -R | --report-times Report a break-down of compiler's execution time.
 -S | --skip-dependencies Do not automatically compile dependencies during JIT.
 -X | --debug-addl <addl> Implies -d and adds selected additional instrumentation (comma-separated; see 'help' for list).

Environment variables:

 SPICY_PATH Colon-separated list of directories to search for modules. In contrast to --library-paths using this flag overwrites builtin paths.

Inputs can be .hlt, .spicy, *.spicy *.hlt *.hlto.

7. Zeek Integration

While Spicy itself remains application independent, transparent
integration into Zeek has been a primary goal for its development. To
facilitate adding new protocol and file analyzers to Zeek [https://zeek.org], there is a Zeek plugin [https://github.com/zeek/spicy-plugin] that makes Spicy parsers
accessible to Zeek’s processing pipeline. In the following, we dig
deeper into how to use all of this.

7.1. Terminology

In Zeek, the term “analyzer” refers generally to a component that
processes a particular protocol (“protocol analyzer”), file format
(“file analyzer”), or low-level packet structure (“packet analyzer”).
“Processing” here means more than just parsing content: An analyzer
controls when it wants to be used (e.g., with connections on specific
ports, or with files of a specific MIME type); what events to generate
for Zeek’s scripting layer; and how to handle any errors occurring
during parsing. While Spicy itself focuses just on the parsing part,
the Spicy plugin makes it possible to provide the remaining pieces to
Zeek, turning a Spicy parser into a full Zeek analyzer. That’s what we
refer to as a “Spicy (protocol/file/packet) analyzer” for Zeek.

7.2. Installation

To use the Spicy plugin with Zeek, it first needs to be installed. The
recommended way to do so is through Zeek’s package manager zkg [https://docs.zeek.org/projects/package-manager/en/stable]. If you
have not yet installed zkg, follow its instructions [https://docs.zeek.org/projects/package-manager/en/stable/quickstart.html].

You will need to have Spicy and Zeek installed as well of course.
Before proceeding, make sure spicy-config and zeek-config are
in your PATH:

which spicy-config
/opt/spicy/bin/spicy-config

which zeek-config
/usr/local/zeek/bin/zeek-config

7.2.1. Package Installation

The easiest way to install the plugin is through Zeek’s package
manager:

zkg install zeek/spicy-plugin

This will pull down the plugin’s package, compile and test the plugin,
and then install and activate it. That process may take a bit to
complete. To check afterwards that the plugin has
become available, run zeek -N _Zeek::Spicy, it should show output
like this:

zeek -N _Zeek::Spicy
_Zeek::Spicy - Support for Spicy parsers (*.spicy, *.evt, *.hlto) (dynamic, version x.y.z)

By default, zkg will install the most recent release version of the
plugin. If you want to install the current development version, use
zkg install --version main zeek/spicy-plugin instead.

If you want to develop your own Spicy analyzers for Zeek, you will
need a tool that comes with the plugin’s installation: spicyz. If
you are using a recent version of zkg (>= 2.8.0), it’s easy to make
the tool show up in your PATH: Either run zkg env (see this configuration advice [https://docs.zeek.org/projects/package-manager/en/stable/quickstart.html?highlight=zkg%20env#advanced-configuration])
or update your PATH manually:

export PATH=$(zkg config bin_dir):$PATH

If you are using an older version of zkg (including the version
coming with Zeek 4.0), it’s a bit more difficult to find spicyz:
it will be inside your zkg state directory at
<state_dir>/clones/package/spicy-plugin/build/bin/spicyz.
We recommend adding that directory to your PATH. (The state
directory is usually either <zeek-prefix>/var/lib/zkg or
~/.zkg, depending on how you have set up zkg.)

7.2.2. Manual Installation

If you prefer, you can also compile the Zeek plugin yourself, outside
of the package manager by cloning the plugin’s GitHub repository and
building it through CMake. See the instructions in its README [https://github.com/zeek/spicy-plugin]. This will install spicyz
into <prefix>/bin.

Note

Developer’s note: It works to point ZEEK_PLUGIN_PATH directly
to the plugin’s build directory, without installing it first. If
you are building the plugin as part of the Spicy distribution, it
will land in <build-directory>/zeek/spicy-plugin.

7.3. Interface Definitions (“evt files”)

Per above, a Spicy analyzer for Zeek does more than just parsing data.
Accordingly, we need to tell the Zeek plugin a couple of additional
pieces about analyzers we want it to provide to Zeek:

	Analyzer setup
	The plugin needs to know what type of analyzers we are creating,
when we want Zeek to activate them, and what Spicy unit types to
use as their parsing entry point.

	Event definitions
	We need to tell the Spicy plugin what Zeek events to provide and
when to trigger them.

We define all of these through custom interface definition files that
the Spicy plugin reads in. These files use an *.evt extension, and
the following subsections discuss their content in more detail.

Generally, empty lines and comments starting with # are ignored in
an *.evt.

Note

The syntax for *.evt files comes with some legacy pieces that
aren’t particularly pretty. We may clean that up at some point.

7.3.1. Analyzer Setup

You can define both protocol analyzers and file analyzers in an
*.evt file, per the following.

Protocol Analyzer

To define a protocol analyzer, add a new section to an *.evt
file that looks like this:

protocol analyzer ANALYZER_NAME over TRANSPORT_PROTOCOL:
 PROPERTY_1,
 PROPERTY_2,
 ...
 PROPERTY_N;

Here, ANALYZER_NAME is a name to identify your analyzer inside
Zeek. You can choose names arbitrarily as long as they are unique. As
a convention, however, we recommend name with a spicy::* prefix
(e.g., spicy::BitTorrent).

On the Zeek-side, through some normalization, these names
automatically turn into tags added to Zeek’s Analyzer::Tag enum.
For example, spicy::BitTorrent turns into
Analyzer::ANALYZER_SPICY_BITTORRENT.

The analyzer’s name is also what goes into Zeek signatures to activate
an analyzer DPD-style. If the name is spicy::BitTorrent, you’d
write enable "spicy::BitTorrent" into the signature.

Note

Once you have made your analyzers available to Zeek (which we will
discuss below), running zeek -NN _Zeek::Spicy will show you a
summary of what’s now available, including their Zeek-side names
and tags.

TRANSPORT_PROTOCOL can be either tcp or udp, depending on
the transport-layer protocol that your new analyzer wants to sit on
top of.

Following that initial protocol analyzer ... line, a set of
properties defines further specifics of your analyzer. The following
properties are supported:

	parse [originator|responder] with SPICY_UNIT
	Specifies the top-level Spicy unit(s) the analyzer uses for
parsing payload, with SPICY_UNIT being a fully-qualified
Spicy-side type name (e.g. HTTP::Request). The unit type must
have been declared as public in Spicy.

If originator is given, the unit is used only for parsing the
connection’s originator-side payload; and if responder is
given, only for responder-side payload. If neither is given, it’s
used for both sides. In other words, you can use different units
per side by specifying two properties parse originator with
... and parse responder with

	port PORT or ports { PORT_1, ..., PORT_M }
	Specifies one or more well-known ports for which you want Zeek to
automatically activate your analyzer with corresponding
connections. Each port must be specified in Spicy’s syntax
for port constants (e.g., 80/tcp), or as a port range
PORT_START-PORT_END where start and end port are port constants
forming a closed interval. The ports’ transport protocol must match
that of the analyzer.

Note

The plugin will also honor any %port meta data
property that the responder-side
SPICY_UNIT may define (as long as the attribute’s
direction is not originator).

	replaces ANALYZER_NAME
	Disables an existing analyzer that Zeek already provides
internally, allowing you to replace a built-in analyzer with a new
Spicy version. ANALYZER_NAME is the Zeek-side name of the
analyzer. To find that name, inspect the output of zeek -NN
for available analyzers:

zeek -NN | grep '\[Analyzer\]'
...
[Analyzer] SMTP (ANALYZER_SMTP, enabled)
...

Here, SMTP is the name you would write into replaces to
disable the built-in SMTP analyzer.

As a full example, here’s what a new HTTP analyzer could look like:

protocol analyzer spicy::HTTP over TCP:
 parse originator with HTTP::Requests,
 parse responder with HTTP::Replies,
 port 80/tcp,
 replaces HTTP;

Packet Analyzer

Defining packet analyzers works quite similar to protocol analyzers through
*.evt sections like this:

packet analyzer ANALYZER_NAME:
 PROPERTY_1,
 PROPERTY_2,
 ...
 PROPERTY_N;

Here, ANALYZER_NAME is again a name to identify your analyzer
inside Zeek. On the Zeek-side, the name will be added to Zeek’s
PacketAnalyzer::Tag enum.

Packet analyzers support just one property currently:

	parse with SPICY_UNIT
	Specifies the top-level Spicy unit the analyzer uses for
parsing each packet, with SPICY_UNIT being a fully-qualified
Spicy-side type name. The unit type must have been declared as
public in Spicy.

As a full example, here’s what a new analyzer could look like:

	packet analyzer spicy::RawLayer:
	parse with Raw Layer::Packet;

In addition to the Spicy-side configuration, packet analyzers also need to be
registered with Zeek inside a zeek_init event handler; see the
Zeek documentation [https://docs.zeek.org/en/master/frameworks/packet-analysis.html]
for more. You will need to use the
PacketAnalyzer::try_register_packet_analyzer_by_name [https://docs.zeek.org/en/master/scripts/base/bif/packet_analysis.bif.zeek.html#id-PacketAnalyzer::try_register_packet_analyzer_by_name]
for registering Spicy analyzers (not register_packet_analyzer), with
the name of the new Spicy analyzer being ANALYZER_NAME. zeek -NN
shows the names of existing analyzers. For example:

event zeek_init()
 {
 if (! PacketAnalyzer::try_register_packet_analyzer_by_name("Ethernet", 0x88b5, "spicy::RawLayer"))
 Reporter::error("cannot register Spicy analyzer");
 }

File Analyzer

Defining file analyzers works quite similar to protocol analyzers,
through *.evt sections like this:

file analyzer ANALYZER_NAME:
 PROPERTY_1,
 PROPERTY_2,
 ...
 PROPERTY_N;

Here, ANALYZER_NAME is again a name to identify your analyzer
inside Zeek. On the Zeek-side, the name will be added to Zeek’s
Files::Tag enum.

File analyzers support the following properties:

	parse with SPICY_UNIT
	Specifies the top-level Spicy unit the analyzer uses for
parsing file content, with SPICY_UNIT being a
fully-qualified Spicy-side type name. The unit type must have
been declared as public in Spicy.

	mime-type MIME-TYPE
	Specifies a MIME type for which you want Zeek to automatically
activate your analyzer when it sees a corresponding file on
the network. The type is a specified in standard
type/subtype notion, without quotes (e.g., image/gif).

Note

The plugin will also honor any %mime-type meta
data property that the SPICY_UNIT
may define.

Note

Keep in mind that Zeek identifies MIME types through
“content sniffing” (i.e., similar to libmagic), and
usually not by protocol-level headers (e.g., not through
HTTP’s Content-Type header). If in doubt, examine
files.log for what it records as a file’s type.

	replaces ANALYZER_NAME
	Disables an existing file analyzer that Zeek already provides
internally, allowing you to replace a built-in analyzer with a new
Spicy version. ANALYZER_NAME is the Zeek-side name of the
analyzer. To find that name, inspect the output of zeek -NN
for available analyzers:

zeek -NN | grep '\[File Analyzer\]'
...
[File Analyzer] PE (ANALYZER_PE, enabled)
...

Here, PE is the name you would write into replaces to
disable the built-in PE analyzer.

Note

This feature requires Zeek >= 4.1

As a full example, here’s what a new GIF analyzer could look like:

file analyzer spicy::GIF:
 parse with GIF::Image,
 mime-type image/gif;

7.3.2. Event Definitions

To define a Zeek event that you want the Spicy plugin to trigger, you
add lines of the form:

on HOOK_ID -> event EVENT_NAME(ARG1_, ..., ARG_N);

on HOOK_ID if COND -> event EVENT_NAME(ARG1_, ..., ARG_N);

The Zeek plugin automatically derives from this everything it needs to
register new events with Zeek, including a mapping of the arguments’
Spicy types to corresponding Zeek types. More specifically, these are
the pieces going into such an event definition:

	on HOOK_ID
	A Spicy-side ID that defines when you want to trigger the event.
This works just like a on ... unit hook,
and you can indeed use anything here that Spicy supports for those
as well (except container hooks). So, e.g., on
HTTP::Request::%done triggers an event whenever a
HTTP::Request unit has been fully parsed, and on
HTTP::Request::uri leads to an event each time the uri field
has been parsed. (In the former example, you may skip the
%done actually: on HTTP::Request implicitly adds it.)

	EVENT_NAME
	The Zeek-side name of event you want to generate, preferably
including a namespace (e.g., http::request).

	ARG_I
	An argument to pass to the event, given as an arbitrary Spicy
expression. The expression will be evaluated within the context of
the unit that the on ... triggers on, similar to code running
inside the body of a corresponding unit hook.
That means the expressions has access to self for accessing
the unit instance that’s currently being parsed.

The Spicy type of the expression determines the Zeek-side type of
the corresponding event parameters. Most Spicy types translate
over pretty naturally, the following summarizes the translation:

Type Conversion from Spicy to Zeek

	Spicy Type

	Zeek Type

	Notes

	addr

	addr

	

	bool

	bool

	

	enum { ... }

	enum { ... }

	[1]

	int(8|16|32|64)

	int

	

	interval

	interval

	

	list<T>

	vector of T

	

	map<V,K>

	table[V] of K

	

	optional<T>

	T

	[2]

	port

	port

	

	real

	double

	

	set<T>

	set[T]

	

	string

	string

	

	time

	time

	

	tuple<T_1, ... ,T_N>

	record { T1, ..., T_N }

	[3]

	uint(8|16|32|64)

	count

	

	vector<T>

	vector of T

	

Note

	[1]
	A corresponding Zeek-side enum type is automatically
created. See below for more.

	[2]
	The optional value must have a value, otherwise a runtime
exception will be thrown.

	[3]
	Must be mapped to a Zeek-side record type with matching
fields.

If a tuple element is mapped to a record field with a
&default or &optional attribute, a couple special
cases are supported:

	If the expression evaluates to Null, the record
field is left unset.

	If the element’s expression uses the
.? operator and that
fails to produce a value, the record field is
likewise left unset.

In addition to full Spicy expressions, there are three reserved
IDs with specific meanings when used as arguments:

	$conn
	Refers to the connection that’s currently being processed
by Zeek. On the Zeek-side this will turn into a parameter
of Zeek type connection. This ID can be used only with
protocol analyzers.

	$file
	Refers to the file that’s currently being processed by
Zeek. On the Zeek-side this will turn into a parameter of
Zeek type fa_file. This ID can be used only with file
analyzers.

	$packet
	Refers to the packet that’s currently being processed by
Zeek. On the Zeek-side this will turn into a parameter of
Zeek type raw_pkt_hdr, with any fields filled in that
have already been parsed by Zeek’s built-in analyzers.
This ID can be used only with packet analyzers. (Note that
instantiation of raw_pkt_hdr values can be relatively
expensive on the Zeek side, so best to limit usage of this
ID to a small part of the overall traffic.)

	$is_orig
	A boolean indicating if the data currently being processed
is coming from the originator (True) or responder
(False) of the underlying connection. This turns into
a corresponding boolean value on the Zeek side. This ID
can be used only with protocol analyzers.

Note

Some tips:

	If you want to force a specific type on the Zeek-side, you
have a couple of options:

	Spicy may provide a cast operator from the actual
type into the desired type (e.g., cast<uint64>(..)).

	Argument expressions have access to global functions
defined in the Spicy source files, so you can write a
conversion function taking an argument with its
original type and returning it with the desired type.

	List comprehension can be convenient to fill Zeek vectors:
[some_func(i) for i in self.my_list].

	if COND
	If given, events are only generated if the expression COND
evaluates to true. Just like event arguments, the expression is
evaluated in the context of the current unit instance and has
access to self.

7.3.2.1. Enum Types

The Zeek plugin automatically makes Spicy enum types available on the Zeek-side if you declare them
public. For example, assume the following Spicy declaration:

module Test;

public type MyEnum = enum {
 A = 83,
 B = 84,
 C = 85
};

The plugin will then create the equivalent of the following Zeek type
for use in your scripts:

module Test;

export {

 type MyEnum: enum {
 MyEnum_A = 83,
 MyEnum_B = 84,
 MyEnum_A = 85,
 MyEnum_Undef = -1
 };

}

(The odd naming is due to ID limitations on the Zeek side.)

You can also see the type in the output of zeek -NN:

[...]
_Zeek::Spicy - Support for Spicy parsers
 [Type] Test::MyEnum
[...]

7.3.3. Importing Spicy Modules

Code in an *.evt file may need access to additional Spicy modules,
such as when expressions for event parameters call Spicy
functions defined elsewhere. To make a Spicy module available, you can
insert import statements into the *.evt file that work
just like in Spicy code:

	import NAME
	Imports Spicy module NAME.

	import NAME from X.Y.Z;
	Searches for the module NAME (i.e., for the filename
NAME.spicy) inside a sub-directory X/Y/Z along the
search path, and then imports it.

7.3.4. Conditional Compilation

*.evt files offer the same basic form of conditional
compilation through
@if/@else/@endif blocks as Spicy scripts. The Zeek plugin
makes two additional identifiers available for testing to both
*.evt and *.spicy code:

	HAVE_ZEEK
	Always set to 1 by the plugin. This can be used for feature
testing from Spicy code to check if it’s being compiled for
Zeek.

	ZEEK_VERSION
	The numerical Zeek version that’s being compiled for (see the
output of spicy-config --zeek-version-number).

This is an example bracketing code by Zeek version in an EVT file:

@if ZEEK_VERSION < 30200
 <EVT code for Zeek versions older than 3.2>
@else
 <EVT code for Zeek version 3.2 or newer>
@endif

7.4. Compiling Analyzers

Once you have the *.spicy and *.evt source files for your new
analyzer, you have two options to compile them, either in advance, or
just-in-time at startup.

7.4.1. Ahead Of Time Compilation

You can precompile analyzers into *.hlto object files containing
their final executable code. To do that, pass the relevant *.spicy
and *.evt files to spicyz, then have Zeek load the output. To
repeat the example from the Getting
Started guide:

spicyz -o my-http-analyzer.hlto my-http.spicy my-http.evt
zeek -Cr request-line.pcap my-http-analyzer.hlto my-http.zeek
Zeek saw from 127.0.0.1: GET /index.html 1.0

While this approach requires an additional step every time
something changes, starting up Zeek now executes quickly.

Instead of providing the precompiled analyzer on the Zeek command
line, you can also copy them into
${prefix}/lib/spicy/Zeek_Spicy/modules. The Spicy plugin will
automatically load any *.hlto object files it finds there. In
addition, the plugin also scans Zeek’s plugin directory for *.hlto
files. Alternatively, you can override both of those locations by
setting the environment variable ZEEK_SPICY_MODULE_PATH to a set of
colon-separated directories to search instead. The plugin will then
only look there. In all cases, the plugin searches any directories
recursively, so it will find *.hlto also if they are nested in
subfolders.

Run spicyz -h to see some additional options it provides, which
are similar to spicy-driver.

7.4.2. Just In Time Compilation

To compile analyzers on the fly, you can pass your *.spicy and
*.evt files to Zeek just like any of its scripts, either on the
command-line or through @load statements. The Spicy plugin hooks
into Zeek’s processing of input files and diverts them the right way
into its compilation pipeline.

This approach can be quite convenient, in particular during
development of new analyzers as it makes it easy to iterate—just
restart Zeek to pick up any changes. The disadvantage is that
compiling Spicy parsers takes a noticeable amount of time, which
you’ll incur every time Zeek starts up; and it makes setting compiler
options more difficult (see below). We generally recommend using
ahead-of-time compilation when working with the Zeek plugin.

7.5. Controlling Zeek from Spicy

Spicy grammars can import a provided library module zeek to gain
access to Zeek-specific functions that call back into Zeek’s
processing:

function zeek::confirm_protocol()

Triggers a DPD protocol confirmation for the current connection.

function zeek::reject_protocol(reason: string)

Triggers a DPD protocol violation for the current connection.

function zeek::is_orig() : bool

Returns true if we’re currently parsing the originator side of a connection.

function zeek::uid() : string

Returns the current connection’s UID.

function zeek::conn_id() : tuple<orig_h

Returns the current connection’s 4-tuple ID.

function zeek::flip_roles()

Instructs Zeek to flip the directionality of the current connection.

function zeek::number_packets() : uint64

Returns the number of packets seen so far on the current side of the current connection.

function zeek::protocol_begin(analyzer: optional<string> = Null)

Adds a Zeek-side child protocol analyzer to the current connection.

analyzer: type of analyzer to instantiate, specified through its Zeek-side
name (similar to what Zeek’s signature action enable takes); if not
specified, Zeek will perform its usual dynamic protocol detection to figure
out how to parse the data (the latter will work only for TCP protocols, though.)

function zeek::protocol_data_in(is_orig: bool, data: bytes)

Forwards protocol data to all previously instantiated Zeek-side child protocol analyzers.

is_orig: true to feed the data to the child’s originator side, false for the responder
data: chunk of data to forward to child analyzer

Note that due to Zeek limitations, any data passed through this function will always
be forwarded to all currently active child analyzers.

function zeek::protocol_gap(is_orig: bool, offset: uint64, len: uint64)

Signals a gap in input data to all previously instantiated Zeek-side child protocol analyzers.

is_orig: true to signal gap to the child’s originator side, false for the responder
offset: start offset of gap in input stream
len: size of gap

Note that due to Zeek limitations, any gaps signaled through this function will always
be forwarded to all currently active child analyzers.

function zeek::protocol_end()

Signals end-of-data to all previously instantiated Zeek-side child protocol
analyzers and removes them.

function zeek::file_begin(mime_type: optional<string> = Null) : string

Signals the beginning of a file to Zeek’s file analysis, associating it with the current connection.
Optionally, a mime type can be provided. It will be passed on to Zeek’s file analysis framework.
Returns the Zeek-side file ID of the new file.

function zeek::fuid() : string

Returns the current file’s FUID.

function zeek::file_set_size(size: uint64, fid: optional<string> = Null)

Signals the expected size of a file to Zeek’s file analysis.

size: expected size of file
fid: Zeek-side ID of the file to operate on; if not given, the file started by the most recent file_begin() will be used

function zeek::file_data_in(data: bytes, fid: optional<string> = Null)

Passes file content on to Zeek’s file analysis.

data: chunk of raw data to pass into analysis
fid: Zeek-side ID of the file to operate on; if not given, the file started by the most recent file_begin() will be used

function zeek::file_data_in_at_offset(data: bytes, offset: uint64, fid: optional<string> = Null)

Passes file content at a specific offset on to Zeek’s file analysis.

data: chunk of raw data to pass into analysis
offset: position in file where data starts
fid: Zeek-side ID of the file to operate on; if not given, the file started by the most recent file_begin() will be used

function zeek::file_gap(offset: uint64, len: uint64, fid: optional<string> = Null)

Signals a gap in a file to Zeek’s file analysis.

offset: position in file where gap starts
len: size of gap
fid: Zeek-side ID of the file to operate on; if not given, the file started by the most recent file_begin() will be used

function zeek::file_end(fid: optional<string> = Null)

Signals the end of a file to Zeek’s file analysis.

fid: Zeek-side ID of the file to operate on; if not given, the file started by the most recent file_begin() will be used

function zeek::forward_packet(identifier: uint32)

Inside a packet analyzer, forwards what data remains after parsing the top-level unit
on to another analyzer. The index specifies the target, per the current dispatcher table.

function zeek::network_time() : time

Gets the network time from Zeek.

7.6. Dynamic Protocol Detection (DPD)

Spicy protocol analyzers support Zeek’s Dynamic Protocol Detection
(DPD), i.e., analysis independent of any well-known ports. To use that
with your analyzer, add two pieces:

	A Zeek signature [https://docs.zeek.org/en/current/frameworks/signatures.html] to
activate your analyzer based on payload patterns. Just like with
any of Zeek’s standard analyzers, a signature can activate a Spicy
analyzer through the enable "<name>" keyword. The name of the
analyzer comes out of the EVT file: it is the ANALYZER_NAME
with the double colons replaced with an underscore (e.g.,
spicy::HTTP turns into enable "spicy_HTTP".

	You should call zeek::confirm_protocol() (see
Controlling Zeek from Spicy) from a hook inside your grammar at a point
when the parser can be reasonably certain that it is processing the
expected protocol. Optionally, you may also call
zeek::reject_protocol() when you’re sure the parser is not
parsing the right protocol (e.g., inside an %error hook). Doing so will let Zeek stop feeding it more
data.

7.7. Configuration

7.7.1. Options

The Spicy plugin provides a set of script-level options to tune its
behavior, similar to what the spicy-driver provides as
command-line arguments. These all live in the Spicy:: namespace:

 ## Activate compile-time debugging output for given debug streams (comma-separated list).
 const codegen_debug = "" &redef;

 ## Enable debug mode for code generation.
 const debug = F &redef;

 ## If debug is true, add selected additional instrumentation (comma-separated list).
 const debug_addl = "" &redef;

 ## Save all generated code into files on disk.
 const dump_code = F &redef;

 ## Enable optimization for code generation.
 const optimize = F &redef;

 ## Report a break-down of compiler's execution time.
 const report_times = F &redef;

 ## Disable code validation.
 const skip_validation = F &redef;

 ## Show output of Spicy print statements.
 const enable_print = F &redef;

 ## abort() instead of throwing HILTI # exceptions.
 const abort_on_exceptions = F &redef;

 ## Include backtraces when reporting unhandled exceptions.
 const show_backtraces = F &redef;

 ## Maximum depth of recursive file analysis (Spicy analyzers only)
 const max_file_depth: count = 5 &redef;

Note, however, that most of those options affect code generation. It’s
usually easier to set them through spicyz when precompiling an
analyzer. If you are using Zeek itself to compile an analyzer
just-in-time, keep in mind that any code generation options need to be
in effect at the time the Spicy plugin kicks of the compilation
process. A redef from another script should work fine, as scripts
are fully processed before compilation starts. However, changing
values from the command-line (via Zeek’s var=value) won’t be
processed in time due to intricacies of Zeek’s timing. To make it
easier to change an option from the command-line, the Spicy plugin
also supports an environment variable ZEEK_SPICY_PLUGIN_OPTIONS that
accepts a subset of spicy-driver command-line options in the form
of a string. For example, to JIT a debug version of all analyzers,
set ZEEK_SPICY_PLUGIN_OPTIONS=-d. The full set of options is this:

Supported Zeek-side Spicy options:
 -A When executing compiled code, abort() instead of throwing HILTI exceptions.
 -B Include backtraces when reporting unhandled exceptions.
 -C Dump all generated code to disk for debugging.
 -d Include debug instrumentation into generated code.
 -D <streams> Activate compile-time debugging output for given debug streams (comma-separated).
 -O Build optimized release version of generated code.
 -o <out.hlto> Save precompiled code into file and exit.
 -R Report a break-down of compiler's execution time.
 -V Don't validate ASTs (for debugging only).
 -X <addl> Implies -d and adds selected additional instrumentation (comma-separated).

To get that usage message, set ZEEK_SPICY_PLUGIN_OPTIONS=-h when
running Zeek.

7.7.2. Functions

The Spicy plugin also adds the following new built-in functions to
Zeek, which likewise live in the Spicy:: namespace:

 ## Enable a specific Spicy protocol analyzer if not already active. If this
 ## analyzer replaces an standard analyzer, that one will automatically be
 ## disabled.
 ##
 ## tag: analyzer to toggle
 ##
 ## Returns: true if the operation succeeded
 global enable_protocol_analyzer: function(tag: Analyzer::Tag) : bool;

 ## Disable a specific Spicy protocol analyzer if not already inactive. If
 ## this analyzer replaces an standard analyzer, that one will automatically
 ## be re-enabled.
 ##
 ## tag: analyzer to toggle
 ##
 ## Returns: true if the operation succeeded
 global disable_protocol_analyzer: function(tag: Analyzer::Tag) : bool;

 # The following functions are only available with Zeek versions > 4.0.

@if (Version::number >= 40100)
 ## Enable a specific Spicy file analyzer if not already active. If this
 ## analyzer replaces an standard analyzer, that one will automatically be
 ## disabled.
 ##
 ## tag: analyzer to toggle
 ##
 ## Returns: true if the operation succeeded
 global enable_file_analyzer: function(tag: Files::Tag) : bool;

 ## Disable a specific Spicy file analyzer if not already inactive. If
 ## this analyzer replaces an standard analyzer, that one will automatically
 ## be re-enabled.
 ##
 ## tag: analyzer to toggle
 ##
 ## Returns: true if the operation succeeded
 global disable_file_analyzer: function(tag: Files::Tag) : bool;
@endif

7.8. Debugging

If Zeek doesn’t seem to be doing the right thing with your Spicy
analyzer, there are several ways to debug what’s going on. To
facilitate that, compile your analyzer with spicyz -d and, if
possible, use a debug version of Zeek (i.e., build Zeek with
./configure --enable-debug).

If your analyzer doesn’t seem to be active at all, first make sure
Zeek actually knows about it: It should show up in the output of
zeek -NN _Zeek::Spicy. If it doesn’t, you might not being loading
the right *.spicy or *.evt files. Also check your *.evt if
it defines your analyzer correctly.

If Zeek knows about your analyzer and just doesn’t seem to activate
it, double-check that ports or MIME types are correct in the *.evt
file. If you’re using a signature instead, try a port/MIME type first,
just to make sure it’s not a matter of signature mismatches.

If there’s nothing obviously wrong with your source files, you can
trace what the plugin is compiling by running spicyz with -D
zeek. For example, reusing the HTTP example from the Getting Started guide:

spicyz -D zeek my-http.spicy my-http.evt -o my-http.hlt
[debug/zeek] Loading Spicy file "/Users/robin/work/spicy/main/tests/spicy/doc/my-http.spicy"
[debug/zeek] Loading EVT file "/Users/robin/work/spicy/main/doc/examples/my-http.evt"
[debug/zeek] Loading events from /Users/robin/work/spicy/main/doc/examples/my-http.evt
[debug/zeek] Got protocol analyzer definition for spicy_MyHTTP
[debug/zeek] Got event definition for MyHTTP::request_line
[debug/zeek] Running Spicy driver
[debug/zeek] Got unit type 'MyHTTP::Version'
[debug/zeek] Got unit type 'MyHTTP::RequestLine'
[debug/zeek] Adding protocol analyzer 'spicy_MyHTTP'
[debug/zeek] Adding Spicy hook 'MyHTTP::RequestLine::0x25_done' for event MyHTTP::request_line
[debug/zeek] Done with Spicy driver

You can see the main pieces in there: The files being loaded, unit
types provided by them, analyzers and event being created.

If that all looks as expected, it’s time to turn to the Zeek side and
see what it’s doing at runtime. You’ll need a debug version of Zeek
for that, as well as a small trace with traffic that you expect your
analyzer to process. Run Zeek with -B dpd (or -B file_analysis
if you’re debugging a file analyzer) on your trace to record the
analyzer activity into debug.log. For example, with the same HTTP
example, we get:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	# zeek -B dpd -Cr request-line.pcap my-http.hlto
cat debug.log
[dpd] Registering analyzer SPICY_MYHTTP for port 12345/1
[...[
[dpd] Available analyzers after zeek_init():
[...]
[dpd] spicy_MyHTTP (enabled)
[...]
[dpd] Analyzers by port:
[dpd] 12345/tcp: SPICY_MYHTTP
[...]
[dpd] TCP[5] added child SPICY_MYHTTP[7]
[dpd] 127.0.0.1:59619 > 127.0.0.1:12345 activated SPICY_MYHTTP analyzer due to port 12345
[...]
[dpd] SPICY_MYHTTP[7] DeliverStream(25, T) [GET /index.html HTTP/1.0\x0a]
[dpd] SPICY_MYHTTP[7] EndOfData(T)
[dpd] SPICY_MYHTTP[7] EndOfData(F)

The first few lines show that Zeek’s analyzer system registers the
analyzer as expected. The subsequent lines show that the analyzer gets
activated for processing the connection in the trace, and that it then
receives the data that we know indeed constitutes its payload, before
it eventually gets shutdown.

To see this from the plugin’s side, set the zeek debug stream
through the HILTI_DEBUG environment variable:

HILTI_DEBUG=zeek zeek -Cr request-line.pcap my-http.hlto
[zeek] Have Spicy protocol analyzer spicy_MyHTTP
[zeek] Registering Protocol::TCP protocol analyzer spicy_MyHTTP with Zeek
[zeek] Scheduling analyzer for port 12345/tcp
[zeek] Done with post-script initialization
[zeek] [SPICY_MYHTTP/7/orig] initial chunk: |GET /index.html HTTP/1.0\\x0a| (eod=false)
[zeek] [SPICY_MYHTTP/7/orig] -> event MyHTTP::request_line($conn, GET, /index.html, 1.0)
[zeek] [SPICY_MYHTTP/7/orig] done with parsing
[zeek] [SPICY_MYHTTP/7/orig] parsing finished, skipping further originator payload
[zeek] [SPICY_MYHTTP/7/resp] no unit specified for parsing
[zeek] [SPICY_MYHTTP/7/orig] skipping end-of-data delivery
[zeek] [SPICY_MYHTTP/7/resp] no unit specified for parsing
[zeek] [SPICY_MYHTTP/7/orig] skipping end-of-data delivery
[zeek] [SPICY_MYHTTP/7/resp] no unit specified for parsing

After the initial initialization, you see the data arriving and the
event being generated for Zeek. The plugin also reports that we didn’t
define a unit for the responder side—which we know in this case, but
if that appears unexpectedly you probably found a problem.

So we know now that our analyzer is receiving the anticipated data to
parse. At this point, we can switch to debugging the Spicy side
through the usual mechanisms. In particular,
setting HILTI_DEBUG=spicy tends to be helpful:

HILTI_DEBUG=spicy zeek -Cr request-line.pcap my-http.hlto
[spicy] MyHTTP::RequestLine
[spicy] method = GET
[spicy] anon_2 =
[spicy] uri = /index.html
[spicy] anon_3 =
[spicy] MyHTTP::Version
[spicy] anon = HTTP/
[spicy] number = 1.0
[spicy] version = [$number=b"1.0"]
[spicy] anon_4 = \n

If everything looks right with the parsing, and the right events are
generated too, then the final part is to check out the events that
arrive on the Zeek side. To get Zeek to see an event that the plugin
raises, you need to have at least one handler implemented for it in
one of your Zeek scripts. You can then load Zeek’s
misc/dump-events to see them as they are being received, including
their full Zeek-side values:

zeek -Cr request-line.pcap my-http.hlto misc/dump-events
[...]
1580991211.780489 MyHTTP::request_line
 [0] c: connection = [id=[orig_h=127.0.0.1, orig_p=59619/tcp, ...] ...]
 [1] method: string = GET
 [2] uri: string = /index.html
 [3] version: string = 1.0
[...]

8. Custom Host Applications

Spicy provides a C++ API for integrating its parsers into custom host
applications. There are two different approaches to doing this:

	If you want to integrate just one specific kind of parser, Spicy
can generate C++ prototypes for it that facilitate feeding data and
accessing parsing results.

	If you want to write a generic host application that can support
arbitrary parsers, Spicy provides a dynamic runtime introspection
API for dynamically instantiating parsers and accessing results.

We discuss both approaches in the following.

Note

Internally, Spicy is a layer on top of an intermediary framework
called HILTI. It is the HILTI runtime library that implements most
of the functionality we’ll look at in this section, so you’ll see
quite a bit of HILTI-side functionality. Spicy comes with a small
additional runtime library of its own that adds anythings that’s
specific to the parsers it generates.

Note

The API for host applications is still in flux, and some parts
aren’t the prettiest yet. Specifics of this may change in future
versions of HILTI/Spicy.

8.1. Integrating a Specific Parser

We’ll use our simple HTTP example from the Getting Started
section as a running example for a parser we want to leverage from a
C++ application.

my-http.spicy

module MyHTTP;

const Token = /[^ \t\r\n]+/;
const WhiteSpace = /[\t]+/;
const NewLine = /\r?\n/;

type Version = unit {
 : /HTTP\//;
 number: /[0-9]+\.[0-9]+/;
};

public type RequestLine = unit {
 method: Token;
 : WhiteSpace;
 uri: Token;
 : WhiteSpace;
 version: Version;
 : NewLine;

 on %done {
 print self.method, self.uri, self.version.number;
 }
};

First, we’ll use spicyc to generate a C++ parser from the Spicy
source code:

spicyc -c -g my-http.spicy -o my-http.cc

Option -c (aka --output-c++) tells spicyc that we want it
to generate C++ code (rather than compiling everything down into
executable code).

Option -g (aka --disable-optimizations) tells spicyc to not perform
global optimizations. Optimizations are performed on all modules passed to a
invocation of spicyc and can remove e.g., unused code. Since we generate
output files with multiple invocations, optimizations could lead to incomplete
code.

We also need spicyc to get generate some additional additional
“linker” code implementing internal plumbing necessary for
cross-module functionality. That’s what -l (aka
--output-linker) does:

spicyc -l -g my-http.cc -o my-http-linker.cc

We’ll compile this linker code along with the my-http.cc.

Next, spicyc can also generate C++ prototypes for us that declare
(1) a set of parsing functions for feeding in data, and (2) a
struct type providing access to the parsed fields:

spicyc -P -g my-http.spicy -o my-http.h

The output of -P (aka --output-prototypes) is a bit convoluted
because it (necessarily) also contains a bunch of Spicy internals.
Stripped down to the interesting parts, it looks like this for our
example:

[...]

namespace __hlt::MyHTTP {
 struct RequestLine : hilti::rt::trait::isStruct, hilti::rt::Controllable<RequestLine> {
 std::optional<hilti::rt::Bytes> method{};
 std::optional<hilti::rt::Bytes> uri{};
 std::optional<hilti::rt::ValueReference<Version>> version{};
 [...]
 };

 struct Version : hilti::rt::trait::isStruct, hilti::rt::Controllable<Version> {
 std::optional<hilti::rt::Bytes> number{};
 [...]
 };

[...]
}

namespace hlt::MyHTTP::RequestLine {
 extern auto parse1(hilti::rt::ValueReference<hilti::rt::Stream>& data, const std::optional<hilti::rt::stream::View>& cur) -> hilti::rt::Resumable;
 extern auto parse2(hilti::rt::ValueReference<__hlt::MyHTTP::RequestLine>& unit, hilti::rt::ValueReference<hilti::rt::Stream>& data, const std::optional<hilti::rt::stream::View>& cur) -> hilti::rt::Resumable;
 extern auto parse3(spicy::rt::ParsedUnit& gunit, hilti::rt::ValueReference<hilti::rt::Stream>& data, const std::optional<hilti::rt::stream::View>& cur) -> hilti::rt::Resumable;
}

[...]

Todo

The struct declarations should move into the public
namespace.

You can see the struct definitions corresponding to the two unit
types, as well as a set of parsing functions with three different
signatures:

	parse1
	The simplest form of parsing function receives a stream of input
data, along with an optional view into the stream to limit the
region to parse if desired. parse` will internally instantiate
an instance of the unit’s struct, and then feed the unit’s
parser with the data stream. However, it won’t provide access to
what’s being parsed as it doesn’t pass back the struct.

	parse2
	The second form takes a pre-instantiated instance of the unit’s
struct type, which parsing will fill out. Once parsing
finishes, results can be accessed by inspecting the struct
fields.

	parse3
	The third form takes a pre-instantiated instance of a generic,
type-erased unit type that the parsing will fill out. Accessing
the data requires use of HILTI’s reflection API, which we will
discuss in Supporting Arbitrary Parsers.

Let’s start by using parse1():

my-http-host.cc

#include <iostream>

#include <hilti/rt/libhilti.h>

#include <spicy/rt/libspicy.h>

#include "my-http.h"

int main(int argc, char** argv) {
 assert(argc == 2);

 // Initialize runtime library.
 hilti::rt::init();

 // Create stream with $1 as data.
 auto stream = hilti::rt::reference::make_value<hilti::rt::Stream>(argv[1]);
 stream->freeze();

 // Feed data.
 hlt::MyHTTP::RequestLine::parse1(stream, {}, {});

 // Wrap up runtime library.
 hilti::rt::done();

 return 0;
}

This code first instantiates a stream from data giving on the command
line. It freezes the stream to indicate that no further data will
arrive later. Then it sends the stream into the parse1() function
for processing.

We can now use the standard C++ compiler to build all this into an
executable, leveraging spicy-config to add the necessary flags
for finding includes and libraries:

clang++ -o my-http my-http-host.cc my-http.cc my-http-linker.cc $(spicy-config --cxxflags --ldflags)
./my-http $'GET index.html HTTP/1.0\n'
GET, /index.html, 1.0

The output comes from the execution of the print statement inside
the Spicy grammar, demonstrating that the parsing proceeded as
expected.

When using parse1() we don’t get access to the parsed information.
If we want that, we can use parse2() instead and provide it with a
struct to fill in:

my-http-host.cc

#include <iostream>

#include <hilti/rt/libhilti.h>
#include <spicy/rt/libspicy.h>

#include "my-http.h"

int main(int argc, char** argv) {
 assert(argc == 2);

 // Initialize runtime libraries.
 hilti::rt::init();
 spicy::rt::init();

 // Create stream with $1 as data.
 auto stream = hilti::rt::reference::make_value<hilti::rt::Stream>(argv[1]);
 stream->freeze();

 // Instantiate unit.
 auto request = hilti::rt::reference::make_value<__hlt::MyHTTP::RequestLine>();

 // Feed data.
 hlt::MyHTTP::RequestLine::parse2(request, stream, {}, {});

 // Access fields.
 std::cout << "method : " << *request->method << std::endl;
 std::cout << "uri : " << *request->uri << std::endl;
 std::cout << "version: " << *(*request->version)->number << std::endl;

 // Wrap up runtime libraries.
 spicy::rt::done();
 hilti::rt::done();

 return 0;
}

clang++ -o my-http my-http-host.cc my-http-host.cc $(spicy-config --cxxflags --ldflags)
./my-http $'GET index.html HTTP/1.0\n'
GET, /index.html, 1.0
method : GET
uri : /index.html
version: 1.0

Another approach to retrieving field values goes through Spicy hooks
calling back into the host application. That’s how the Zeek plugin
operates. Let’s say we want to execute a custom C++ function every
time a RequestList has been parsed. By adding the following code
to my-http.spicy, we (1) declare that function on the Spicy-side,
and (2) implement a Spicy hook that calls it:

my-http.spicy

public function got_request_line(method: bytes, uri: bytes, version_number: bytes) : void &cxxname="got_request_line";

on RequestLine::%done {
 got_request_line(self.method, self.uri, self.version.number);
}

The &cxxname attribute for got_request_line indicates to Spicy
that this is a function implemented externally inside custom C++ code,
accessible through the given name. Now we need to implement that
function:

my-http-callback.cc

#include <iostream>

#include <hilti/rt/libhilti.h>

#include <spicy/rt/libspicy.h>

void got_request_line(const hilti::rt::Bytes& method, const hilti::rt::Bytes& uri, const hilti::rt::Bytes& version_number) {
 std::cout << "In C++ land: " << method << ", " << uri << ", " << version_number << std::endl;
}

Finally, we compile it altogether:

spicyc -c -g my-http.spicy -o my-http.cc
spicyc -l -g my-http.cc -o my-http-linker.cc
spicyc -P -g my-http.spicy -o my-http.h
clang++ -o my-http my-http.cc my-http-linker.cc my-http-callback.cc my-http-host.cc $(spicy-config --cxxflags --ldflags)
./my-http $'GET index.html HTTP/1.0\n'
In C++ land: GET, index.html, 1.0
GET, index.html, 1.0

Note that the C++ function signature needs to match what Spicy
expects, based on the Spicy-side prototype. If you are unsure how
Spicy arguments translate into C++ arguments, look at the C++
prototype that’s included for the callback function in the output of
-P.

A couple more notes on the compilation process for integrating
Spicy-generated code into custom host applications:

	Above we used spicyc -l to link our Spicy code from just a
single Spicy source file. If you have more than one source file,
you need to link them altogether in a single step. For example,
if we had A.spicy, B.spicy and C.spicy, we’d do:

spicyc -c -g A.spicy -o A.cc
spicyc -c -g B.spicy -o B.cc
spicyc -c -g C.spicy -o C.cc
spicyc -l -g A.cc B.cc C.cc -o linker.cc
clang++ A.cc B.cc C.cc linker.cc -o a.out ...

	If your Spicy code is importing any library modules (e.g., the
standard filter module), you’ll need to compile those as
well in the same fashion.

8.2. Supporting Arbitrary Parsers

This approach is more complex, and we’ll just briefly describe the
main pieces here. All of the tools coming with Spicy support arbitrary
parsers and can serve as further examples (e.g., spicy-driver,
spicy-dump, the Zeek plugin). Indeed, they all
build on the same C++ library class spicy::rt::Driver that
provides a higher-level API to working with Spicy’s parsers in a
generic fashion. We’ll do the same in the following.

8.2.1. Retrieving Available Parsers

The first challenge for a generic host application is that it cannot
know what parsers are even available. Spicy’s runtime library provides
an API to get a list of all parsers that are compiled into the current
process. Continuing to use the my-http.spicy example, this code
prints out our one available parser:

my-http-host.cc

#include <iostream>

#include <hilti/rt/libhilti.h>

int main(int argc, char** argv) {
 assert(argc == 2);

 // Initialize runtime libraries.
 hilti::rt::init();
 spicy::rt::init();

 // Instantiate driver providing higher level parsing API.
 spicy::rt::Driver driver;

 // Print out available parsers.
 print(unit->value());

 // Wrap up runtime libraries.
 spicy::rt::done();
 hilti::rt::done();

 return 0;
}

clang++ -o my-http my-http-host.cc my-http.cc my-http-linker.cc $(spicy-config --cxxflags --ldflags)
./my-http
Available parsers:

 MyHTTP::RequestLine

Using the name of the parser (MyHTTP::RequestLine) we can
instantiate it from C++, and then feed it data:

 // Retrieve meta object describing parser.
 auto parser = driver.lookupParser("MyHTTP::RequestLine");
 assert(parser);

 // Fill string stream with $1 as data to parse.
 std::stringstream data(argv[1]);

 // Feed data.
 auto unit = driver.processInput(**parser, data);

clang++ -o my-http my-http-host.cc my-http.cc my-http-linker.cc $(spicy-config --cxxflags --ldflags)
./my-http $'GET index.html HTTP/1.0\n'
GET, /index.html, 1.0

That’s the output of the print statement once more.

unit is of type spicy::rt::ParsedUnit, which is a type-erased
class holding, in this case, an instance of
_hlt::MyHTTP::RequestLine. Internally, that instance went through
the parse3() function that we have encountered in the previous
section. To access the parsed fields, there’s a visitor API to iterate
generically over HILTI types like this unit:

void print(const hilti::rt::type_info::Value& v) {
 const auto& type = v.type();
 switch (type.tag) {
 case hilti::rt::TypeInfo::Bytes: std::cout << type.bytes->get(v); break;
 case hilti::rt::TypeInfo::ValueReference: print(type.value_reference->value(v)); break;
 case hilti::rt::TypeInfo::Struct:
 for (const auto& [f, y] : type.struct_->iterate(v)) {
 std::cout << f.name << ": ";
 print(y);
 std::cout << std::endl;
 }
 break;
 default: assert(false);
 }
}

Adding print(unit->value() after the call to processInput()
then gives us this output:

clang++ -o my-http my-http-host.cc my-http.cc my-http-linker.cc $(spicy-config --cxxflags --ldflags)
./my-http $'GET index.html HTTP/1.0\n'
GET, /index.html, 1.0
method: GET
uri: /index.html
version: number: 1.0

Our visitor code implements just what we need for our example. The
source code of spicy-dump shows a full implementation covering all
available types.

So far we have compiled the Spicy parsers statically into the
generated executable. The runtime API supports loading them
dynamically as well from pre-compiled HLTO files through the class
hilti::rt::Library. Here’s the full example leveraging that,
taking the file to load from the command line:

my-driver

int main(int argc, char** argv) {
 // Usage now: "my-driver <hlto> <name-of-parser> <data>"
 assert(argc == 4);

 // Load pre-compiled parser. This must come before initializing the
 // runtime libraries.
 auto library = hilti::rt::Library(argv[1]);
 auto rc = library.open();
 assert(rc);

 // Initialize runtime libraries.
 hilti::rt::init();
 spicy::rt::init();

 // Instantiate driver providing higher level parsing API.
 spicy::rt::Driver driver;

 // Print out available parsers.
 driver.listParsers(std::cout);

 // Retrieve meta object describing parser.
 auto parser = driver.lookupParser(argv[2]);
 assert(parser);

 // Fill string stream with $1 as data to parse.
 std::stringstream data(argv[3]);

 // Feed data.
 auto unit = driver.processInput(**parser, data);
 assert(unit);

 // Print out conntent of parsed unit.
 print(unit->value());

 // Wrap up runtime libraries.
 spicy::rt::done();
 hilti::rt::done();

 return 0;
}

$(spicy-config --cxx) -o my-driver my-driver.cc $(spicy-config --cxxflags --ldflags --dynamic-loading)
spicyc -j my-http.spicy >my-http.hlto
./my-driver my-http.hlto "$(cat data)"
Available parsers:

 MyHTTP::RequestLine

GET, /index.html, 1.0
method: GET
uri: /index.html
version: number: 1.0

Note

Note the addition of --dynamic-loading to the hilti-config
command line. That’s needed when the resulting binary will
dynamically load precompiled Spicy parsers because linker flags
need to be slightly adjusted in that case.

8.3. API Documentation

We won’t go further into details of the HILTI/Spicy runtime API here.
Please see C++ API documentation for more on that, the namespaces
hilti::rt and spicy::rt cover what’s available to host
applications.

Our examples always passed the full input at once. You don’t need to
do that, Spicy’s parsers can process input incrementally as it comes
in, and return back to the caller to retrieve more. See the source of
spicy::Driver::processInput() [https://github.com/zeek/spicy/blob/main/spicy/runtime/src/driver.cc]
for an example of how to implement that.

9. Release Notes

This following summarizes the most important changes in recent Spicy releases.
For an exhaustive list of all changes, see the #CHANGES [https://github.com/zeek/spicy/blob/main/CHANGES] file coming with
the distribution.

9.1. Version 1.4

New Functionality

	Add support for recovery from parse errors or incomplete input

This release adds support for recovering from parse errors or incomplete
input (e.g., gaps or partial connections). Grammars can denote unit
synchronization points with a &synchronize attribute. If an error is
encountered while extracting a previous fields, parsing will attempt to
resynchronize the input at that point. The synchronization result needs to be
checked and confirmed or rejected explicitly; a number of hooks are provided
for that. See the docs for details.

	Remove restriction that units used as sinks need to be public

	Uses ccache for C++ compilation during JIT if Spicy itself was configured to use ccache

Spicy spends a considerable amount of JIT time compiling generated C++ code.
This work can be cached if neither inputs nor any of the used flags have
changed so that subsequent JIT runs can complete much faster.

We now automatically cache many C++ compilation artifacts with ccache if
Spicy itself was configured with e.g.,
--with-hilti-compiler-launcher=ccache. This behavior can be controlled or
disabled via the HILTI_CXX_COMPILER_LAUNCHER environment variable.

	GH-842: Add Spicy support for struct initialization.

	GH-1036: Support unit initialization through a struct constructor expression.

Changed Functionality

	GH-1074: %random-access is now derived automatically from uses and
declaring it explicitly has been deprecated.

	GH-1072: Disallow enum declarations with non-unique values.

It is unclear what code should be generated when requested to convert an
integer value to the following enum:

type E = enum {
 A = 1,
 B = 2,
 C = 1,
};

For 1 we could produce either E::A or E::C here.

Instead of allowing this ambiguity we now disallow enums with non-unique values.

Bug fixes

	Prevent exception if cache directory is not readable.

	Propagate failure from cmake up to ./configure.

	GH-1030: Make sure types required for globals are declared before being used.

	Fix potentially use-after-free in stringification of stream::View.

	GH-1087: Make offset return correct value even before parsing of field.

Documentation

9.2. Version 1.3

New Functionality

	Add optimizer removing unused %random-access or %filter functionality

If a unit has e.g., a %random-access attribute Spicy emits additional
code to track and update offsets. If the %random-access functionality is
not used this leads to unneeded code being emitted which causes unneeded
overhead, both during JIT and during execution.

We now emit such feature-dependent code under a feature flag (effectively a
global boolean constant) which is by default on. Additionally, we added an
optimizer pass which detects whether a feature is used and can disable unused
feature functionality (switching the feature flag to off), and can then
remove unreachable code behind such disabled feature flags by performing
basic constant folding.

	Add optimizer pass removing unused sink functionality

By default any unit declared public can be used as a sink. To support
sink behavior additional code is emitted and invoked at runtime, regardless
of whether the unit is used as a sink or not.

We now detect unused sink functionality and avoid emitting it.

	GH-934: Allow $$ in place of self in unit convert attributes.

Changed Functionality

	GH-941: Allow use of units with all defaulted parameters as entry points.

	We added precompilation support for libspicy.h.

	Drop support for end-of-life Fedora 32, and add support for Fedora 34.

Bug fixes

	Correctly handle lookups for NULL library symbols.

	Use safe integers for size functions in the runtime library.

	Make it possible to build on ARM64.

	Fix building with gcc-11.

Documentation

9.3. Version 1.2

New Functionality

	GH-913: Add support for switch-level &parse-at and
&parse-from attributes inside a unit.

	Add optimizer pass removing unimplemented functions and methods.

This introduces a global pass triggered after all individual input ASTs have
been finalized, but before we generate any C++ code. We then strip out any
unimplemented member functions (typically Spicy hooks), both their
definitions as well as their uses.

In order to correctly handle previously generated C++ files which might
have been generated with different optimization settings, we disallow
optimizations if we detect that a C++ input file was generated by us.

Changed Functionality

	Add validation of unit switch attributes. We previously silently
ignored unsupported attributes; now errors are raised.

	Remove configure option --build-zeek-plugin. Spicy no longer
supports building the Zeek plugin/analyzers in-tree. This used to be
available primarily for development purposes, but became challenging
to maintain.

	Add environment variable HILTI_CXX_INCLUDE_DIRS to specify
additional C++ include directories when compiling generated code.

	GH-940: Add runtime check for parsing progress during loops.

Bug fixes

	Fix computation of unset locations.

	Fix accidental truncating conversion in integer code.

Documentation

9.4. Version 1.1

New Functionality

	GH-844: Add support for &size attribute to unit switch
statement.

	GH-26: Add %skip, %skip-pre and %skip-post properties
for skipping input matching a regular expression before any further
input processing takes place.

	Extend library functionality provided by the spicy module:

	crc32_init()/crc32_add() compute CRC32 checksums.

	mktime() creates a time value from individual components.

	zlib_init() initializes a ZlibStream with a given window bits argument.

	Zlib now accepts a window bits parameter.

	Add a new find() method to units for that searches for a
bytes sequence inside their input data, forward or backward
from a given starting position.

	Add support for &chunked when parsing bytes data with
&until or &until_including.

	Add encode() method to string for conversion to bytes.

	Extend parsing of void fields:

	Add support for &eod to skip all data until the end of the
current input is encountered.

	Add support for &until to skip all data until a deliminator
is encountered. The deliminator will be extracted from the stream
before continuing.

	Port Spicy to Apple silicon.

	Add Dockerfile for OpenSUSE 15.2.

Changed Functionality

	Reject void fields with names.

	Lower minimum required Python version to 3.2.

	GH-882: Lower minimum required Bison version to 3.0.

Bug fixes

	GH-872: Fix missing normalization of enum label IDs.

	GH-878: Fix casting integers to enums.

	GH-889: Fix hook handling for anonymous void fields.

	GH-901: Fix type resolution bug in &convert.

	Fix handling of &size attribute for anonymous void fields.

	Fix missing update to input position before running %done hook.

	Add validation rejecting $$ in hooks not supporting it.

	Make sure container sizes are runtime integers.

	Fix missing operator<< for enums when generating debug code.

	GH-917: Default-initialize forwarding fields without type arguments.

Documentation

	GH-37: Add documentation on how to skip data with void fields.

9.5. Migrating from the old prototype

Below we summarize language changes in Spicy compared to the original
research prototype [https://www.icir.org/hilti]. Note that some of
the prototype’s more advanced functionality has not yet been ported to
the new code base; see the corresponding list [https://github.com/zeek/spicy/issues?q=is%3Aissue+is%3Aopen+label%3A%22Port+V1%22]
on GitHub for what’s still missing.

Changes:

	Renamed export linkage to public.

	Renamed %byteorder property to %byte-order.

	Renamed &byteorder attribute to &byte-order.

	Renamed &bitorder attribute to &bit-order.

	All unit-level properties now need to conclude with a semicolon (e.g.,
%filter;).

	Renamed &length attribute to &size.

	Renamed &until_including attribute to &until-including.

	Replaced &parse with separate &parse-from (taking a “bytes”
instance) and &parse-at (taking a stream iterator) attributes.

	Attributes no longer accept their arguments in parentheses, it now
must <attr>=expr. (Before, both versions were accepted.)

	uint<N> and int<N> are no longer accepted, use
uintN/intN instead (which worked before already as well)

	list<T> is no longer supported, use vector<T> instead.

	New syntax for parsing sequences: Use x: int8[5] instead of x:
vector<int8> &length=5. For lists of unknown size, use x:
int8[]. When parsing sequences sub-units, use: x: Item[]; or,
if further arguments/attributes are required, x:
(Item(1,2,3))[]. (The latter syntax isn’t great, but the old
syntax was ambiguous.)

	New syntax for functions: function f(<params>) [: <result>]
instead of <result> f(<params>)

	Renamed runtime support module from Spicy to spicy (so use
import spicy)

	In units, variables are now initialized to default values by
default. Previously, that was (inconsistently) happening only for
variables of type sink. To revert to the old behaviour, add
“&optional” to the variable.

	Renamed type double to real.

	Generally, types don’t coerce implicitly to bool anymore except in
specific language contexts, such as in statements with boolean
conditions.

	Filters can now be implemented in Spicy itself. The pre-built
filter::Base64Decode and filter::Zlib provide the base64 and
zlib functionality of the previously built-in filters.

	{unit,sink}::add_filter are renamed to {unit,sink}::connect_filter.

	Enums don’t coerce to bool anymore, need to manually compare to
Undef.

	Coercion to bool now happens only in certain contexts, like
if-conditions (similar to C++).

	The sink method sequence has been renamed to
sequence_number.

	The effect of the sink method set_initial_sequence_number no
longer persists when reconnecting a different unit to a sink.

	&transient is no longer a supported unit field attribute. The
same effect can now be achieved through an anonymous field (also see
next point).

	$$ can now be generally used in hooks to refer to the just
parsed value. That’s particularly useful inside hooks for anonymous
fields, including fields that previously were &transient (see
above). Previously, “$$” worked only for container elements in
foreach hooks (which still operates the same way).

	Fields of type real are parsed with &type attribute (e.g.,
&type=Spicy::RealType::IEEE754_Double). They used to
&precision attributes with a different enum type.

	Assigning to unit fields and variables no longer triggers any hooks.
That also means that hooks are generally no longer supported for
variables (This is tricky to implement, not clear it’s worth the
effort.)

	When importing modules, module names are now case-sensitive.

	When parsing vectors/lists of integers of a given length, use
&count instead of &length.

	Zeek plugin:

	Bro::dpd_confirm() has been renamed to
zeek::confirm_protocol(). There’s also a corresponding
zeek::reject_protocol().

	To auto-export enums to Zeek, they need to be declared public.

10. Developer’s Manual

	10.1. Architecture
	10.1.1. Components & Data Flow

	10.1.2. Runtime Libraries

	10.2. Testing
	10.2.1. BTest

	10.2.2. Unit tests

	10.2.3. Sanitizers

	10.2.4. Code Quality

	10.2.5. Docker Builds

	10.2.6. How Test Your Branch

	10.3. Debugging

	10.4. Benchmarking
	10.4.1. End-to-end Parsers

	10.4.2. Microbenchmarks

	10.5. Style
	10.5.1. Tooling

	10.5.2. Commit Messages

	10.5.3. Formatting

	10.5.4. Static analysis

	10.5.5. Code Conventions

	10.6. C++ API documentation

10.1. Architecture

10.1.1. Components & Data Flow

[image: ../_images/architecture.svg]

10.1.2. Runtime Libraries

HILTI and Spicy each come with their own runtime libraries providing
functionality that the execution of compiled code requires. The bulk
of the functionality here resides with the HILTI side, with the Spicy
runtime adding pieces that are specific to its use case (i.e.,
parsing).

Conceptually, there are a few different categories of functionality
going into these runtime libraries, per the following summary.

Categories of Functionality

[image: ../_images/runtime-libraries.svg]
	Category 1
	Public library functionality that Spicy programs can import
(e.g., functions like spicy::current_time() inside the
spicy module; filters like filter::Zlib inside the
filter module). This functionality is declared in
spicy/lib/*.spicy and implemented in C++ in libspicy-rt.a.

	Category 2
	Public library functionality that HILTI programs can import
(e.g., the hilti::print() function inside the hilti
module). This functionality is declared in hilti/lib/hilti.hlt
and implemented in C++ in libhilti-rt.a.

Note

“Public functionality” here means being available to any
HILTI program. This functionality is not exposed inside
Spicy, and hence usually not visible to users unless they
happen to start writing HILTI programs (e.g., when adding test
cases to the code base).

	Category 3
	Public library functionality for C++ host applications to
#include for interacting with the generated C++ code (e.g., to
retrieve the list of available Spicy parsers, start parsing, and
gain access to parsed values). This is declared inside the
hilti:rt C++ namespace by hilti/include/rt/libhilti.h
for HILTI-side functionality; and inside the spicy::rt
namespace by spicy/include/rt/libspicy.h for purely Spicy-side
functionality. This functionality is implemented in
libhilti-rt.a and libspicy-rt.a, respectively.

Note

Everything in the sub-namespaces {hilti,spicy}::rt::detail
remains private and is covered by categories 4 and 5.

	Category 4
	Private Spicy-side library functionality that the HILTI code
coming out of Spicy compilation can import (e.g., functions to
access parsing input, such as spicy_rt::waitForInput();
HILTI-side type definitions for Spicy-specific types, such as for
a sink). This functionality is declared in
spicy/lib/spicy_rt.spicy and implemented in C++ in
libspicy-rt.a.

	Category 5
	Private HILTI-side library functionality for use by C++ code
generated from HILTI code. This is declared by
hilti/include/rt/libhilti.h inside the hilti::rt::detail
namespace. The functionality is implemented in libhilti-rt.a.
(The generated C++ code uses public hilti::rt functionality
from Category 3 as well.)

Note

This category does not have any Spicy-side logic (by
definition, because Spicy does not generate C++ code
directly). Everything in libspicy-rt.a, and
spicy::rt::detail is covered by one of the other
categories.

What goes where?

Think of Category 1 as the “Spicy standard library”: functionality for
user-side Spicy code to leverage.

Category 2 is the same for HILTI, except that the universe of HILTI
users remains extremely small right now (it’s just Spicy and people
writing tests).

Category 3 is our client-side C++ API for host applications to drive
Spicy parsers and retrieve results.

When adding new functionality, one needs to decide between the HILTI
and Spicy sides. Rules of thumb:

	If it’s “standard library”-type stuff that’s meant for Spicy
users to import, make it part of Category 1.

	If it’s something that’s specific to parsing, add it to the
Spicy side, either Category 3 for public functionality meant to
be used by host applications; or Category 4 if it’s something
needed just by the generated HILTI code doing the parsing.

	If it’s something that’s generic enough to be used by other
HILTI applications (once we get them), add it to the HILTI
side, either Category 2 or 5. Think, e.g., a Zeek script
compiler.

10.2. Testing

Spicy’s testing & CI setup includes several pieces that we discuss in
the following.

TLDR; If you make changes, make sure that make check runs through.
You need the right clang-format (see Formatting) and
clang-tidy (see Static analysis) versions for that (from Clang
>=10). If you don’t have them (or want to save time), run at least
make test. If that still takes too long for you, run make
test-core.

10.2.1. BTest

Most tests are end-to-end tests that work from Spicy (or HILTI) source
code and check that everything compiles and produces the expected
output. We use BTest [https://github.com/zeek/btest] to drive
these, very similar to Zeek. make test from the top-level
directory will execute these tests. You get the same effect by
changing into tests/ and running btest -j there (-j
parallelizes test execution).

The most important BTest options are:

	-d prints debugging output for failing tests to the console

	-f diag.log records the same debugging output into diag.log

	-u updates baselines when output changes in expected ways
(don’t forget to commit the updates)

There are some alternatives to running just all tests, per the
following:

Running tests using installation after make install

By default, btests are running completely out of the source & build
directories. If you run btest -a installation, BTest will instead
switch to pulling everything from their installation locations. If you
have already deleted the build directory, you also need to have the
environment variable SPICY_INSTALLATION_DIRECTORY point to your
installation prefix, as otherwise BTest has no way of knowing where to
find Spicy.

10.2.2. Unit tests

There’s a growing set of units test. These are
using doctest and are executed through btest as well, so just
running tests per above will have these included.

Alternatively, the test binaries in the build directory can be executed to
exercise the tests, or one can use the check build target to execute all
unit tests.

10.2.3. Sanitizers

To build tools and libraries with support for Clang’s address/leak
sanitizer, configure with --enable-sanitizer. If Clang’s asan
libraries aren’t in a standard runtime library path, you’ll also need
to set LD_LIBRARY_PATH (Linux) or DYLD_LIBRARY_PATH (macOS) to
point there (e.g., LD_LIBRARY_PATH=/opt/clang9/lib/clang/9.0.1/lib/linux).

When using the Spicy plugin for Zeek and Zeek hasn’t been compiled
with sanitizer support, you’ll also need to set LD_PRELOAD (Linux)
or DYLD_INSERT_LIBRARIES (macOS) to the shared asan library to
use (e.g.,
LD_PRELOAD=/data/clang9/lib/clang/9.0.1/lib/linux/libclang_rt.asan-x86_64.so).
Because you probably don’t want to set that permanently, the test
suite pays attention to a variable ZEEK_LD_PRELOAD: If you set
that before running btest to the path you want in LD_PRELOAD,
the relevant tests will copy the value for running Zeek.

To make the sanitizer symbolize its output you need to set the
ASAN_SYMBOLIZER_PATH environment variable to point to the
llvm-symbolizer binary, or make sure llvm-symbolizer is in
your PATH.

Note

As we are running one of the CI build with sanitizers, it’s ok not
to run this locally on a regular basis during development.

10.2.4. Code Quality

Our CI runs the Formatting and Static analysis checks, and
will fail if any of that doesn’t pass. To execute these locally, run
the make target format and tidy, respectively. Don’t forget to
set CLANG_FORMAT and CLANG_TIDY to the right version of the
binary if they aren’t in your PATH.

CI also runs pre-commit [https://pre-commit.com] with a
configuration pre-configured in .pre-commit-config.yaml. To run that
locally on every commit, install pre-commit and then put its git hook
in place through executing pre-commit install; see the
installation instructions [https://pre-commit.com/#install] for
more details.

10.2.5. Docker Builds

We are shipping a number of Docker files in docker/; see
Using Docker for more information. As part of our CI, we make sure
these build OK and pass btest -a installation. If you have Docker
available, you can run these individually yourself through make
test-<platform> in docker/. However, usually it’s fine to leave
this to CI.

10.2.6. How Test Your Branch

If you run make check in the top-level directory you get the
combination of all the btests, formatting, and linting. That’s the
best check to do to make sure your branch is in good shape, in
particular before filing a pull request.

10.3. Debugging

The user manual’s debugging section serves as a
good starting point for development-side debugging as well—it’s
often the same mechanisms that help understand why something’s not
working as expected. In particular, looking at the generated HILTI &
C++ code often shows quickly what’s going on.

That section describes only runtime debugging output. The Spicy
toolchain also has a set of compile-time debug output streams that
shine light on various parts of the compiler’s operation. To activate
that output, both spicyc and spicy-driver (and hiltic as
well) take a -D option accepting a comma-separated list of stream
tags. The following choices are available:

	ast-dump-iterations
	The compiler internally rewrites ASTs in multiple rounds until
they stabilize. Activating this stream will print the ASTs into
files dbg.* on disk after each round. This is pretty noisy,
and maybe most helpful as a last resort when it’s otherwise hard
to understand some aspects of AST processing without seeing really
all the changes.

	ast-final
	Prints out all the final ASTs, with all transformations, ID &
operator resolving, etc fully applied (and just before final
validation).

	ast-orig
	Prints out all the original ASTs, before any changes are
applied.

	ast-pre-transformed
	Prints out ASTs just before the AST transformation passes kick in.
Note that “transformation” here refers to a specific pass in the
pipeline that’s primarily used for Spicy-to-HILTI AST rewriting.

	ast-resolved
	Prints out ASTs just after the pass that resolves IDs and operators has
concluded. Note that this happens once per round, with
progressively more nodes being resolved.

	ast-scopes
	Prints out ASTs just after scopes have been built for all nodes,
with the output including the scopes. Note that this happens
once per round, with progressively more nodes being resolved.

	ast-transformed
	Prints out ASTs just after the AST transformation passes kick in.
Note that “transformation” here refers to a specific pass in the
pipeline that’s primarily used for Spicy-to-HILTI AST rewriting.

	ast-codegen
	Prints out the ASTs used for C++ code generation. These are the final ASTs
with possibly additional global optimizations applied to them.

	compiler
	Prints out a various progress updates about the compiler’s
internal workings. Note that driver is often a better
high-level starting point.

	driver
	Prints out the main high-level steps while going from source code
to final compiler output. This stream provides a good high-level
overview what’s going on, with others going into more detail on
specific parts.

	grammar
	Prints out the parsing grammars that Spicy’s parser generator
creates before code generation.

	jit
	Prints out details about the JIT process.

	parser
	Prints out details about flex/bison processing.

	resolver
	Prints out a detailed record of how, and why, IDs and operators
are resolved (or not) during AST rewriting.

10.4. Benchmarking

10.4.1. End-to-end Parsers

We have a Benchmarking script that builds the HTTP and DNS parsers,
runs them on traces both with and without Zeek, and then reports total
execution times. The script also compares times against Zeek’s
standard analyzers. The following summarizes how to use that script.

Preparation

	You need to build both Spicy and Zeek in release mode (which is the
default for both).

	You need sufficiently large traces of HTTP and DNS traffic and
preprocess them into the right format. We normally use Zeek’s M57
testsuite traces [https://github.com/zeek/zeek-testing/blob/master/traces.cfg]
for this, and have prepared a prebuilt archive of the processed
data that you can just download and extract:
spicy-benchmark-m57.tar.xz [https://download.zeek.org/data/spicy-benchmark-m57.tar.xz]
(careful, it’s large!).

To preprocess some other trace trace.pcap, do the following:

	Extract HTTP and DNS sub-traces into spicy-http.pcap and
spicy-dns.pcap, respectively (do not change the file names):

tcpdump -r trace.pcap -w spicy-http.pcap tcp port 80
tcpdump -r trace.pcap -w spicy-dns.pcap udp port 53

	Run Zeek on these traces with the record-spicy-batch.zeek script that
comes with Spicy:

zeek -br spicy-http.pcap zeek/scripts/record-spicy-batch.zeek SpicyBatch::filename=spicy-http.dat
zeek -br spicy-dns.pcap zeek/scripts/record-spicy-batch.zeek SpicyBatch::filename=spicy-dns.dat

	Move traces and resulting data files into a separate directory:

mkdir my-benchmark-data
mv spicy-{http,dns}.pcap spicy-{http,dns}.data my-benchmark-data/

	Now you can use that my-benchmark-data/ directory with the
Benchmarking script, as shown below.

Execution

	Use scripts/run-benchmark script to build/recompile the
parsers. It’s easiest to run out of the Spicy build directory (see
its usage message for setting paths otherwise). Watch for warnings
about accidentally using debug versions of Spicy or Zeek:

cd build
../scripts/run-benchmark build

This will put all precompiled code into ./benchmark.

	Run the benchmark script with a directory containing your preprocessed data.
If you’re using the provided M57 archive:

../scripts/run-benchmark -t /path/to/spicy-benchmark-m57/long run

 http-static 1.58 1.54 1.56
 http-hlto 1.74 1.75 1.75
http-zeek-spicy 4.97 4.87 5.02 conn.log=2752 http.log=4833
 http-zeek-std 3.69 3.59 3.74 conn.log=2752 http.log=4906

 dns-static 0.01 0.01 0.01
 dns-hlto 0.01 0.01 0.01
 dns-zeek-spicy 0.97 0.94 0.97 conn.log=3458 dns.log=3458
 dns-zeek-std 0.80 0.76 0.76 conn.log=3464 dns.log=3829

Each line is three executions of the same command. Values are user time in seconds.

The run-benchmark script leaves its precompiled code in a
subdirectory ./benchmark. In particular, you will find static
binaries there that you can profile. For example, with perf on
Linux:

perf record --call-graph dwarf -g ./benchmark/http-opt -U -F spicy-benchmark-m57/long/spicy-http.dat
perf report -G

10.4.2. Microbenchmarks

Todo

Add fiber benchmark.

10.5. Style

Todo

This is very preliminary. We’ll extend it over time. It’s
also not consistently applied everywhere yet. Working on that.

10.5.1. Tooling

Spicy ships with a set of linter configurations to enforce some of the style
guidelines documented below. We use pre-commit [https://pre-commit.com/] to
run linters on each commit.

After cloning the repository, one can install the commit hooks by running the
following command from the root of the checkout:

$ pre-commit install && pre-commit install --hook-type commit-msg
pre-commit installed at .git/hooks/pre-commit
pre-commit installed at .git/hooks/commit-msg

With installed hooks the configured linters check the code after each
commit. To run linters standalone one can use the following:

$ pre-commit run -a

See the pre-commit CLI documentation [https://pre-commit.com/#cli] for more
information on how pre-commit can be used.

Note

Some linters might require that a full build was performed or additional
external tooling, see e.g., Formatting.

10.5.2. Commit Messages

	Provide meaningful commit messages. Start the commit message with a
one line summary and then explain at a high-level what’s going on,
including in particular any new functionality and changes to
existing semantics. Include short examples of functionality if
possibles. (Expect people to read your commit messages. :)

	If the commit refers to ticket or PR, include the number into the
commit message.

	Aim to make commits self-containing chunks of functionality. Rebase
and squash before pushing upstream.

	Formatting aspects of commit messages are linted with gitlint [https://jorisroovers.com/gitlint/] via pre-commit hooks, see
Tooling. In particular we enforce that summary lines start with a
capital letter and end in a period, and length limits for both summary and
body lines.

10.5.3. Formatting

Spicy comes with a clang-format configuration that enforces a canonical
style. We require clang-format version >= 10 because we need a style option
that wasn’t available earlier. Formatting is checked by a clang-format
linter which automatically pulls in a suitable clang-format binary, see the
Tooling section.

Spicy’s CI runs pre-commit run clang-format as part of its code checks and will
abort if there’s anything not formatted as expected.

10.5.4. Static analysis

Spicy also comes with a clang-tidy configuration, as well as
Makefile targets similar to the ones for formatting: make tidy
will check the code, and make tidy-fixit will apply fixes
automatically where clang-tidy is able to. Note that the latter
can sometimes make things worse: Double-check git diff before
committing anything.

You can set the environment variable CLANG_TIDY to the full path
of the clang-tidy to ensure the right version is found (which,
similar to clang-format, needs to be from Clang >= 10).

Spicy’s CI runs make tidy as part of its code checks and will
abort if there’s anything not formatted as expected.

10.5.5. Code Conventions

Identifiers

	Class methods: lowerCamelCase() for public and protected methods;
_lowerCamelCase() for private methods.

	Class member constants & variables: lower_case for public
members, and _lower_case_with_leading_underscore for private
members.

	Global function: lowerCamelCase()

Comments

	In header files:

	Public namespace (i.e., anything not in *::detail::*)

	Add Doxygen comments to all namespace elements.

	Add Doxygen comments to all public and protected
members of classes. (Exceptions: Default constructors;
destructors; default operators; “obvious” operators, such
as basic constructors and straight-forward comparisons;
obvious getters/setters).

	Private namespace (i.e., anything in *::detail::*)

	Add a brief sentence or two to all namespace elements that
aren’t obvious.

	Add a brief sentence or two to all class members that aren’t
obvious.

	In implementation files

	For elements that aren’t declared in a separate header file,
follow the rules for headers defining elements of the private
namespace.

	Inside methods and functions, comment liberally but not
needlessly. Briefly explain the main reasoning behind
non-obvious logic, and introduce separate parts inside larger
chunks of code.

Doxygen style

	Always start with a brief one-sentence summary in active voice
(“Changes X to Y.”)

	For functions and methods, include @param and @return tags
even if it seems obvious what’s going on. Add @throws if the
function/method raises an exception in a way that’s considered part
of its specific semantics.

10.6. C++ API documentation

The generated C++ API documentation can be found here.

Index

 Symbols
 | A
 | B
 | E
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

Symbols

 	
 	%on_gap (method)

 	%on_overlap (method)

 	
 	%on_skipped (method)

 	%on_undelivered (method)

A

 	
 	address::Equal (operator)

 	
 	address::family (method)

 	address::Unequal (operator)

B

 	
 	bitfield::Member (operator)

 	bool_::Equal (operator)

 	bool_::Unequal (operator)

 	bytes::at (method)

 	bytes::Begin (operator)

 	bytes::decode (method)

 	bytes::End (operator)

 	bytes::Equal (operator)

 	bytes::find (method)

 	bytes::Greater (operator)

 	bytes::GreaterEqual (operator)

 	bytes::In (operator)

 	bytes::InInv (operator)

 	bytes::iterator::Deref (operator)

 	bytes::iterator::Difference (operator)

 	bytes::iterator::Equal (operator)

 	bytes::iterator::Greater (operator)

 	bytes::iterator::GreaterEqual (operator)

 	bytes::iterator::IncrPostfix (operator)

 	bytes::iterator::IncrPrefix (operator)

 	bytes::iterator::Lower (operator)

 	
 	bytes::iterator::LowerEqual (operator)

 	bytes::iterator::Sum (operator)

 	bytes::iterator::SumAssign (operator)

 	bytes::iterator::Unequal (operator)

 	bytes::join (method)

 	bytes::lower (method)

 	bytes::Lower (operator)

 	bytes::LowerEqual (operator)

 	bytes::match (method)

 	bytes::Size (operator)

 	bytes::split (method)

 	bytes::split1 (method)

 	bytes::starts_with (method)

 	bytes::strip (method)

 	bytes::sub (method), [1], [2]

 	bytes::Sum (operator)

 	bytes::SumAssign (operator), [1], [2]

 	bytes::to_int (method), [1]

 	bytes::to_time (method), [1]

 	bytes::to_uint (method), [1]

 	bytes::Unequal (operator)

 	bytes::upper (method)

E

 	
 	enum_::Call (operator), [1]

 	enum_::Cast (operator), [1]

 	
 	enum_::Equal (operator)

 	enum_::has_label (method)

 	enum_::Unequal (operator)

I

 	
 	integer::BitAnd (operator)

 	integer::BitOr (operator)

 	integer::BitXor (operator)

 	integer::Cast (operator), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	integer::DecrPostfix (operator), [1]

 	integer::DecrPrefix (operator), [1]

 	integer::Difference (operator), [1]

 	integer::DifferenceAssign (operator), [1]

 	integer::Division (operator), [1]

 	integer::DivisionAssign (operator), [1]

 	integer::Equal (operator), [1]

 	integer::Greater (operator), [1]

 	integer::GreaterEqual (operator), [1]

 	integer::IncrPostfix (operator), [1]

 	
 	integer::IncrPrefix (operator), [1]

 	integer::Lower (operator), [1]

 	integer::LowerEqual (operator), [1]

 	integer::Modulo (operator), [1]

 	integer::Multiple (operator), [1]

 	integer::MultipleAssign (operator), [1]

 	integer::Negate (operator)

 	integer::Power (operator), [1]

 	integer::ShiftLeft (operator)

 	integer::ShiftRight (operator)

 	integer::SignNeg (operator)

 	integer::Sum (operator), [1]

 	integer::SumAssign (operator), [1]

 	integer::Unequal (operator), [1]

L

 	
 	list::Begin (operator)

 	list::End (operator)

 	
 	list::Equal (operator)

 	list::Size (operator)

 	list::Unequal (operator)

M

 	
 	map::Begin (operator)

 	map::clear (method)

 	map::Delete (operator)

 	map::End (operator)

 	map::Equal (operator)

 	map::get (method)

 	map::In (operator)

 	map::Index (operator)

 	
 	map::IndexAssign (operator)

 	map::InInv (operator)

 	map::iterator::Deref (operator)

 	map::iterator::Equal (operator)

 	map::iterator::IncrPostfix (operator)

 	map::iterator::IncrPrefix (operator)

 	map::iterator::Unequal (operator)

 	map::Size (operator)

 	map::Unequal (operator)

O

 	
 	optional::Deref (operator)

P

 	
 	port::Equal (operator)

 	
 	port::protocol (method)

 	port::Unequal (operator)

R

 	
 	real::Cast (operator), [1], [2], [3]

 	real::Difference (operator)

 	real::DifferenceAssign (operator)

 	real::Division (operator)

 	real::DivisionAssign (operator)

 	real::Equal (operator)

 	real::Greater (operator)

 	real::GreaterEqual (operator)

 	real::Lower (operator)

 	real::LowerEqual (operator)

 	real::Modulo (operator)

 	
 	real::Multiple (operator)

 	real::MultipleAssign (operator)

 	real::Power (operator)

 	real::SignNeg (operator)

 	real::Sum (operator)

 	real::SumAssign (operator)

 	real::Unequal (operator)

 	regexp::find (method)

 	regexp::match (method)

 	regexp::match_groups (method)

 	regexp::token_matcher (method)

S

 	
 	set::Add (operator)

 	set::Begin (operator)

 	set::clear (method)

 	set::Delete (operator)

 	set::End (operator)

 	set::Equal (operator)

 	set::In (operator)

 	set::InInv (operator)

 	set::iterator::Deref (operator)

 	set::iterator::Equal (operator)

 	set::iterator::IncrPostfix (operator)

 	set::iterator::IncrPrefix (operator)

 	set::iterator::Unequal (operator)

 	set::Size (operator)

 	set::Unequal (operator)

 	sink::close (method)

 	sink::connect (method)

 	sink::connect_filter (method)

 	sink::connect_mime_type (method), [1]

 	sink::gap (method)

 	sink::sequence_number (method)

 	sink::set_auto_trim (method)

 	sink::set_initial_sequence_number (method)

 	sink::set_policy (method)

 	sink::Size (operator), [1]

 	sink::skip (method)

 	sink::trim (method)

 	sink::write (method)

 	stream::at (method)

 	stream::Begin (operator)

 	stream::End (operator)

 	stream::freeze (method)

 	stream::is_frozen (method)

 	stream::iterator::Deref (operator)

 	stream::iterator::Difference (operator)

 	stream::iterator::Equal (operator)

 	stream::iterator::Greater (operator)

 	
 	stream::iterator::GreaterEqual (operator)

 	stream::iterator::IncrPostfix (operator)

 	stream::iterator::IncrPrefix (operator)

 	stream::iterator::is_frozen (method)

 	stream::iterator::Lower (operator)

 	stream::iterator::LowerEqual (operator)

 	stream::iterator::offset (method)

 	stream::iterator::Sum (operator)

 	stream::iterator::SumAssign (operator)

 	stream::iterator::Unequal (operator)

 	stream::Size (operator)

 	stream::SumAssign (operator), [1]

 	stream::trim (method)

 	stream::Unequal (operator)

 	stream::unfreeze (method)

 	stream::view::advance (method), [1]

 	stream::view::advance_to_next_data (method)

 	stream::view::at (method)

 	stream::view::Equal (operator), [1]

 	stream::view::find (method)

 	stream::view::In (operator), [1]

 	stream::view::InInv (operator), [1]

 	stream::view::limit (method)

 	stream::view::offset (method)

 	stream::view::Size (operator)

 	stream::view::starts_with (method)

 	stream::view::sub (method), [1], [2]

 	stream::view::Unequal (operator), [1]

 	string::encode (method)

 	string::Equal (operator)

 	string::Modulo (operator)

 	string::Size (operator)

 	string::Sum (operator)

 	string::Unequal (operator)

 	struct::HasMember (operator)

 	struct::Member (operator)

 	struct::TryMember (operator)

 	struct::Unset (operator)

T

 	
 	time::Difference (operator), [1], [2], [3]

 	time::Equal (operator), [1]

 	time::Greater (operator), [1]

 	time::GreaterEqual (operator), [1]

 	time::Lower (operator), [1]

 	time::LowerEqual (operator), [1]

 	time::nanoseconds (method), [1]

 	
 	time::seconds (method), [1]

 	time::Sum (operator), [1]

 	time::Unequal (operator), [1]

 	tuple::CustomAssign (operator)

 	tuple::Equal (operator)

 	tuple::Index (operator)

 	tuple::Member (operator)

 	tuple::Unequal (operator)

U

 	
 	unit::backtrack (method)

 	unit::connect_filter (method)

 	unit::context (method)

 	unit::find (method)

 	unit::forward (method)

 	unit::forward_eod (method)

 	unit::HasMember (operator)

 	
 	unit::input (method)

 	unit::Member (operator)

 	unit::offset (method)

 	unit::position (method)

 	unit::set_input (method)

 	unit::TryMember (operator)

 	unit::Unset (operator)

V

 	
 	vector::assign (method)

 	vector::at (method)

 	vector::back (method)

 	vector::Begin (operator)

 	vector::End (operator)

 	vector::Equal (operator)

 	vector::front (method)

 	vector::Index (operator)

 	vector::iterator::Deref (operator)

 	vector::iterator::Equal (operator)

 	vector::iterator::IncrPostfix (operator)

 	
 	vector::iterator::IncrPrefix (operator)

 	vector::iterator::Unequal (operator)

 	vector::pop_back (method)

 	vector::push_back (method)

 	vector::reserve (method)

 	vector::resize (method)

 	vector::Size (operator)

 	vector::sub (method), [1]

 	vector::Sum (operator)

 	vector::SumAssign (operator)

 	vector::Unequal (operator)

 _static/doxygen/classhilti_1_1detail_1_1cxx_1_1_formatter.png
hittizCodeF ormatter

I

il detail:cooc F o matter

_static/doxygen/classhilti_1_1detail_1_1cxx_1_1_i_d.png
hiti:cetail:IDBase< 1D, normalize_id >

I

il detail:coov D

_static/doxygen/classhilti_1_1declaration_1_1_property.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase hiltztrait-isDeclaration

%

hiltizDeclarationBase

iz declaration:Property

_static/doxygen/classhilti_1_1declaration_1_1_type.png
hitirait:ishode hitirait:ishode

| I

iltizNodeBase hiltztrait-isDeclaration

. f

hiltizDeclarationBase

iz declaration: Type

_static/doxygen/classhilti_1_1detail_1_1parser_1_1_scanner.png
HittiFlexLexer

[

il detail-parser-Scanner

_static/doxygen/classhilti_1_1detail_1_1visitor_1_1_visitor.png
hiltzdetail: visitor::Visitor< Result, Dispatcher, Erased, order >

AssignFieldindicesVisiar

itz ConstantFoldingVisitor

it eatureRequirementsVisitor

hiltizFuncionVistar

iz MemberVisior

il TypeVisitor

VisitorCheckCananicaliDs

VisitorClearCanonicallDs

VisitorComputeCananicaliDs

_static/doxygen/classhilti_1_1declaration_1_1_module.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase hiltztrait-isDeclaration

t f

hiltizDeclarationBase

iz declaration:Module

_static/doxygen/classhilti_1_1declaration_1_1_parameter.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase hiltztrait-isDeclaration

. f

hiltizDeclarationBase

il declaration:Parameter

_static/doxygen/classhilti_1_1declaration_1_1_imported_module.png
hitirait:ishode hitirait:ishode

| I

iltizNodeBase hiltztrait-isDeclaration

S |

hiltizDeclarationBase

itz declaration:impotedhodule

_static/doxygen/classhilti_1_1declaration_1_1_local_variable.png
hitirait:ishode hitirait:ishode

I I

iltizNodeBase hiltztrait-isDeclaration

1

hiltizDeclarationBase

iz declaration:Localvariable

_static/doxygen/classhilti_1_1ctor_1_1_bytes.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

hilzctor-Bytes

_static/doxygen/classhilti_1_1ctor_1_1_coerced.png
hilti:trait-ishode | | hiltiztrait:isNode

| |

iltizNodeBase iltzArait:isClor

1

ilizctor:Coerced

_static/doxygen/classhilti_1_1ctor_1_1_address.png
hilztrait-ishode | | hiliztrait:isNode

| |

hilizNodeBase | | hili:trait:isClar

. f

hiliclor:Address

_static/doxygen/classhilti_1_1ctor_1_1_bool.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

hilt-ctor-Boal

_static/doxygen/classhilti_1_1ctor_1_1_error.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

hilizctor-E rror

_static/doxygen/classhilti_1_1ctor_1_1_exception.png
hitirait:ishode hitirait:ishode

| |

iltizNodeBase iltzArait:isClor

t f

hil-ctor-Exception

_static/doxygen/classhilti_1_1ctor_1_1_default.png
hitztrait-ishode | | hiltitrait:isNode

I I

hilizNodeBase | | hili:trait:isCtar

t f

hilzctor:Default

_static/doxygen/classhilti_1_1ctor_1_1_enum.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

hilzctor-Enum

_static/doxygen/classhilti_1_1ctor_1_1_interval.png
hitztrait-ishode || hiltitrait:isNode.

I I

hilizNodeBase | | hilt-trait:isClor

. f

hilzctor:inte rval

_static/doxygen/classhilti_1_1ctor_1_1_library.png
hitiztrait:-ishode | | hiltiztrait:isNode

| |

hilizNodeBase | | hii:traitisClor

1

hilizctor:Library

_static/doxygen/classhilti_1_1ctor_1_1_null.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

hilzctor:Nul

_static/doxygen/classhilti_1_1ctor_1_1_optional.png
hilztrait-ishode | | hiliztrait:isNode

| |

hilizNodeBase | | hili:trait:isClar

. f

iltctor:Optional

_static/doxygen/classhilti_1_1ctor_1_1_map.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

hilzctor:Map

_static/doxygen/classhilti_1_1ctor_1_1_network.png
hitt:trait-ishode | | hilti:trait:isNode.

I I

hili:NodeBase | | hili-traitisClor

1

ilctor:Network

_static/doxygen/classhilti_1_1ctor_1_1_reg_exp.png
hilztrait-ishode | | hiliztrait:ishode

| |

hili:NodeBase | | hi:traitisClor

t f

hilt-ctor:RegExp

_static/doxygen/classhilti_1_1ctor_1_1_result.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

hilzctor-Resull

_static/doxygen/classhilti_1_1ctor_1_1_port.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

hilizctor-Part

_static/doxygen/classhilti_1_1ctor_1_1_real.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

hilzctor-Real

_static/doxygen/classhilti_1_1ctor_1_1_set.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

ilt-ctor:Set

_static/doxygen/classhilti_1_1ctor_1_1_list.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

ilzctor:List

_static/doxygen/classhilti_1_1ctor_1_1_struct.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

hil-ctor:Struct

_static/doxygen/classhilti_1_1ctor_1_1_time.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

hilzctor:Time

_static/doxygen/classhilti_1_1ctor_1_1_string.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

hiltctor:String

_static/doxygen/classhilti_1_1ctor_1_1_strong_reference.png
hitirait:ishode hitirait:ishode

I I

iltizNodeBase iltzArait:isClor

t f

hilizctor-StrongReference

_static/doxygen/classhilti_1_1ctor_1_1_unsigned_integer.png
hitirait:ishode hitirait:ishode

| |

iltizNodeBase iltzArait:isClor

t f

it ctor: detail:IntegerBase< uintea_t, type:Lnsignedinteger >

hilzctor-Unsignedinteger

_static/doxygen/classhilti_1_1ctor_1_1_value_reference.png
hitirait:ishode hitirait:ishode

I I

iltizNodeBase iltzArait:isClor

t f

hil-ctor-ValueReference

_static/doxygen/classhilti_1_1ctor_1_1_tuple.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

hilzctor: Tuple

_static/doxygen/classhilti_1_1ctor_1_1_union.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

hilzctor-Union

_static/doxygen/classhilti_1_1ctor_1_1_signed_integer.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

iltzArait:isClor

t

f

ilt:ctordetail-IntegerBase<

intea_t, type:Signedinteger >

hilzctor-Signedinteger

_static/doxygen/classhilti_1_1ctor_1_1_stream.png
hiliztrait-ishode | | hiliztrait:isNode

| |

hili:NodeBase | | hili-traitisCtor

tf

hilzctor-Stream

_static/doxygen/classhilti_1_1declaration_1_1_constant.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase hiltztrait-isDeclaration

%

hiltizDeclarationBase

il declaration:Canstant

_static/doxygen/classhilti_1_1declaration_1_1_expression.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase hiltztrait-isDeclaration

| B

hiltizDeclarationBase

itz declaration:Expression

_static/doxygen/classhilti_1_1ctor_1_1map_1_1_element.png
hitirait:ishode

iltizNodeBase

hil-ctor-map:Element

_static/doxygen/classhilti_1_1ctor_1_1struct___1_1_field.png
hitirait:ishode

iltizNodeBase

hilctorstruct_Field

_static/doxygen/classhilti_1_1declaration_1_1_global_variable.png
hitirait:ishode hitirait:ishode

| I

iltizNodeBase hiltztrait-isDeclaration

| S |

hiltizDeclarationBase

il declaration: GlobalVariable

_static/doxygen/classhilti_1_1declaration_1_1_field.png
hitirait:ishode hitirait:ishode

| I

iltizNodeBase hiltztrait-isDeclaration

. f

hiltizDeclarationBase

iz declaration:Field

_static/doxygen/classhilti_1_1declaration_1_1_function.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase hiltztrait-isDeclaration

%

hiltizDeclarationBase

iz declaration:Function

_static/doxygen/classhilti_1_1ctor_1_1_weak_reference.png
hitirait:ishode hitirait:ishode

I I

iltizNodeBase iltzArait:isClor

%

hilizctor:WeakRefe rence.

_static/doxygen/classhilti_1_1ctor_1_1detail_1_1_integer_base.png
hitirait:ishode hitirait:ishode

| |

iltizNodeBase iltzArait:isClor

A |

hilctor-detail-IntegerBase< T, § >

_static/doxygen/classhilti_1_1ctor_1_1_vector.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

hilzctor-vector

nav.xhtml

 Table of Contents

 		
 Spicy — Generating Robust Parsers for Protocols & File Formats

 		
 Installation

 		
 Pre-built binaries

 		
 Linux

 		
 macOS

 		
 Using Docker

 		
 Pre-requisites

 		
 Using pre-built Docker images

 		
 Build your own Spicy container

 		
 Building from source

 		
 Prerequisites

 		
 Building Spicy

 		
 Parser development setup

 		
 Getting Started

 		
 Hello, World!

 		
 A Simple Parser

 		
 Zeek Integration

 		
 Custom Host Application

 		
 Frequently Asked Questions

 		
 Spicy Language

 		
 Toolchain

 		
 Zeek

 		
 Tutorial: A Real Analyzer

 		
 Creating a Spicy Grammar

 		
 Parsing One Packet Type

 		
 Generalizing to More Packet Types

 		
 Using Enums

 		
 Using Unit Parameters

 		
 Complete Grammar

 		
 Zeek Integration

 		
 Compiling the Analyzer

 		
 Activating the Analyzer

 		
 Defining Events

 		
 Detour: Zeek vs. TFTP

 		
 Zeek Script

 		
 Next Steps

 		
 Programming in Spicy

 		
 Parsing

 		
 Basics

 		
 Unit Hooks

 		
 Unit Variables

 		
 Unit Parameters

 		
 Unit Attributes

 		
 Meta data

 		
 Parsing Types

 		
 Controlling Parsing

 		
 Changing Input

 		
 Filters

 		
 Sinks

 		
 Contexts

 		
 Error Recovery

 		
 Language

 		
 Identifiers

 		
 Modules

 		
 Functions

 		
 Variables and Constants

 		
 Types

 		
 Statements

 		
 Error Handling

 		
 Conditional Compilation

 		
 Appendix

 		
 Library

 		
 Module spicy

 		
 Module filter

 		
 Examples

 		
 Debugging

 		
 Debug Hooks

 		
 Debug Streams

 		
 Exceptions

 		
 Inspecting Generated Code

 		
 Skipping validation

 		
 Toolchain

 		
 spicy-build

 		
 spicy-config

 		
 spicyc

 		
 spicy-driver

 		
 Specifying the parser to use

 		
 Batch input

 		
 spicy-dump

 		
 Zeek Integration

 		
 Terminology

 		
 Installation

 		
 Package Installation

 		
 Manual Installation

 		
 Interface Definitions (“evt files”)

 		
 Analyzer Setup

 		
 Event Definitions

 		
 Importing Spicy Modules

 		
 Conditional Compilation

 		
 Compiling Analyzers

 		
 Ahead Of Time Compilation

 		
 Just In Time Compilation

 		
 Controlling Zeek from Spicy

 		
 Dynamic Protocol Detection (DPD)

 		
 Configuration

 		
 Options

 		
 Functions

 		
 Debugging

 		
 Custom Host Applications

 		
 Integrating a Specific Parser

 		
 Supporting Arbitrary Parsers

 		
 Retrieving Available Parsers

 		
 API Documentation

 		
 Release Notes

 		
 Version 1.4

 		
 Version 1.3

 		
 Version 1.2

 		
 Version 1.1

 		
 Migrating from the old prototype

 		
 Developer’s Manual

 		
 Architecture

 		
 Components & Data Flow

 		
 Runtime Libraries

 		
 Testing

 		
 BTest

 		
 Unit tests

 		
 Sanitizers

 		
 Code Quality

 		
 Docker Builds

 		
 How Test Your Branch

 		
 Debugging

 		
 Benchmarking

 		
 End-to-end Parsers

 		
 Microbenchmarks

 		
 Style

 		
 Tooling

 		
 Commit Messages

 		
 Formatting

 		
 Static analysis

 		
 Code Conventions

 		
 C++ API documentation

_static/doxygen/classhilti_1_1statement_1_1_switch.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase iltzArait-isStatement

1

il statement:Switch

_static/doxygen/classhilti_1_1statement_1_1_try.png
hitirait:ishode hitirait:ishode

|

|

hilizNodeBase | | hit:trait:isStatement

%

ilzstatement:Try

_static/doxygen/classhilti_1_1statement_1_1_throw.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase iltzArait-isStatement

t f

iz statement:Thraw

_static/doxygen/classhilti_1_1statement_1_1_yield.png
hitirait:ishode hitirait:ishode

|

|

hilizNodeBase | | hit:trait:isStatement

%

itz statement:Vield

_static/doxygen/classhilti_1_1statement_1_1_while.png
hitirait:ishode hitirait:ishode

|

|

hilizNodeBase | | hit:trait:isStatement

%

iltzstatement: While

_static/doxygen/classhilti_1_1statement_1_1try___1_1_catch.png
hitirait:ishode

iltizNodeBase

il statement:iry_:Catch

_static/doxygen/classhilti_1_1statement_1_1switch___1_1_case.png
hitirait:ishode

iltizNodeBase

il statement:switch_-Case

_static/doxygen/classhilti_1_1trait_1_1is_declaration.png
hitirait:ishode

hili-trait-isDeclaration

hiltizDeclarationBase

it declaration:Canstant

itz declaration:Expression

il declaration:Field

itz declaration:Function

it declaration: GlobalVariable

itz declaration:impotedhodule

itz declaration:Localvariable

itz declaration:Module

itz declaration:Paramster

il declaration:Prapery.

il declaration: Type

spicy:declaration:UnitHook

_static/doxygen/classhilti_1_1trait_1_1is_ctor.png
hitirait:ishode

hili-Arait-isClor

hit:ctor:Address

ilt:ctor:Boal

il:ctor:Bytes

ilt:ctor:Coerced

hilt:ctor:Default

ilt:ctor:detail:IntegerBase< T, § >

il:ctor:Enum

il:ctor-E rror

il ctor:Exception

iltzctor:inte rval

hilt:ctor:Lirary

iltzctor:List

ilt:ctor:Map

ilt:ctor:Network

iltzctor:Nul

ilt:ctor:Optional

hil:ctor:Part

ilt:ctor:Real

ilt:ctor:RegExp

hilt:ctor:Result

ilt:ctor:Set

ilt:ctor:Stream

ilt:ctor:String

ilt:ctor:StrongReference

il ctor:Struct

hilt:ctor:Time

ilt:ctor:Tuple

hiltzctor:Union

hilt:ctor:ValueReference

hilt:ctor:Vector

il:ctor:WeakReference

il ctor:detal:IntegeBase< nfe4_t, type: Signedinteger >

il ctor:detal:IntegerBase< in54_t, type:Lnsignedinteger >

spicy:ctor-Unit

_static/doxygen/classhilti_1_1trait_1_1is_expression.png
hitirait:ishode

hil-Arait-isExpression

il exp ression: Assign

il exp ression:BuilinFunction

ilt:expression:Coerced

itz exp ression: Clor

il expression:Deferred

il exp ression:Grouping

iltzexpression: Keyword

il exp ression: ListComprehension

iltzexpression: Logicaland

ilt:expression:LogicaNot

ilt:expression:LogicalOr

ilt:expression:Member

ilt:expression:Mave

ilt:exp ression: PendingCoerced

ilt:expression: ResolvedD

ilt:expression: ResolvedOperato Base

il exp ression:Temary

iltzexpression:Type_

ilt:exp ression: Typelnfo

il exp ression: TypeW rapped

ilt:expression: LnresolvediD

ilt:exp ression: UnresolvedOperator

iltzexpression:Vaid

_static/doxygen/classhilti_1_1statement_1_1_block.png
hitirait:ishode hitirait:ishode

|

|

hilizNodeBase | | hit:trait:isStatement

%

hilzstatement:Block

_static/doxygen/classhilti_1_1statement_1_1_assert.png
hitirait:ishode hitirait:ishode

I |

iltizNodeBase iltzArait-isStatement

1t

ilzstatement:Asser

_static/doxygen/classhilti_1_1statement_1_1_comment.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase iltzArait-isStatement

. f

iz statement:Comment

_static/doxygen/classhilti_1_1statement_1_1_break.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase iltzArait-isStatement

t f

iltzstatement:Break

_static/doxygen/classhilti_1_1statement_1_1_declaration.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase iltzArait-isStatement

%

il statement:Declaration

_static/doxygen/classhilti_1_1statement_1_1_continue.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase iltzArait-isStatement

. f

ilzstatement:Confinue

_static/doxygen/classhilti_1_1statement_1_1_for.png
hitirait:ishode hitirait:ishode

|

|

hilizNodeBase | | hit:trait:isStatement

%

iltzstatement:For

_static/doxygen/classhilti_1_1statement_1_1_expression.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase iltzArait-isStatement

t f

itz statement: Expression

_static/doxygen/classhilti_1_1statement_1_1_return.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase iltzArait-isStatement

1

itz statement:Returm

_static/doxygen/classhilti_1_1statement_1_1_if.png
hitirait:ishode hitirait:ishode

|

|

hilizNodeBase | | hit:trait:isStatement

%

ilzstatement:If

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_exception.png
hitizrt:type_info: detail:AtomicTypes hilti: it-Exception >

|

il :Aype_info:Exception

_static/doxygen/classhilti_1_1util_1_1type__erasure_1_1trait_1_1_singleton.png
hiti:util:type_erasure:trait:Singleton

T

ilt:D

hiltznodezNane

iltztype:zenum_:Label

hiltztype::nknown

_static/doxygen/classhilti_1_1util_1_1type__erasure_1_1_model_base.png
Concept

|

izl type_erasure:ModelBase< T, Concept, Conceptargs >

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_interval.png
hitirt:type_info: detail:AtomicTypes< hiti:t:nterval >

I

il t:Aype_info:nterval

_static/doxygen/classspicy_1_1_driver.png
hittizDriver

spicy-Driver

Spicyc

SpicyDriver

SpicyDump

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_function.png
hititt:type_info: detail:NotimplementedType

|

il t:Aype_info:Function

_static/doxygen/classhilti_1_1util_1_1type__erasure_1_1trait_1_1_type_erased.png
hiizutil:type_erasure:trait: TypeErased

[

ilt:fl:type_erasure: ErasedBase< Trat, Concept, Model, Conceptargs >

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_network.png
hiti t:type_info: detail:AtomicTypes< hilti:rt:Network >

|

il :Aype_info:Network

_static/doxygen/classspicy_1_1ctor_1_1_unit.png
hitztrait-ishode | hilti:trait:isNode

I I

hilizNodeBase | [hili:trait:isClar

t f

spicy-ctor-Unit

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_library.png
hitizrt:type_info: detail:ValueLessType.

I

il :Aype_info-Library

_static/doxygen/classspicy_1_1_hook.png
hitirait:ishode

iltizNodeBase

spicy:Hook

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_port.png
hiti:rt:type_info::detail:AtomicTypes hilti:it:Port >

|

il :Aype_info:Part

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1_production.png
Production_

[

spicy-detail-cadegen-Production

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_optional.png
hiti:t:type_info: detail:DereferenceableType

|

il :Aype_info:Optional

_static/doxygen/classspicy_1_1declaration_1_1_unit_hook.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase hiltztrait-isDeclaration

. f

hiltizDeclarationBase

spicy-declaration:UniHook

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_reg_exp.png
hitizrt:type_info: detail:AtomicTypes hilti: it:RegExp >

I

il :Aype_info:RegExp

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1production_1_1_boolean.png
spicy:rait:isProduction

|

spicy:detail:cadegen:ProductionBase spicy:trait:isNonTerminal

| N

spicy-detail-cadegen:production:Boalean

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_real.png
hitizrt:type_info: detail:AtomicType< double >

|

il - type_info:Real

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1_production_base.png
spicy:raiti

isProduction

spicy-detall-cadeg

en:ProductionBase

spicy:detail:cadegen:production:Boalean

spicy:detail:cadegen:production:ByteBlock

spicy:detail:cadegen:production:Counter

spicy:detail:cadegen:production:Ctor

spicy:detail:cadegen:production:Enclosure

spicy:detail:cadegen:production:Epsilon

spicy:detail:cadegen:production:FarEach

spicy:detail:cadegen:production:LookAhead

spicy:detail:cadegen:production: Resalved

spicy:detail:codegen:production: Sequence

spicy:detail:cadegen:production:Switch

spicy:detail:cadegen:production: TypeL teral

spicy:detail:cadegen:production:Linit

spicy:detail:cadegen:production:Variable

spicy:detail:cadegen:production:While

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_error.png
hiti:rt:type_info::detail:AtomicTypes hilti: it result:Error >

I

il :Aype_info:Errar

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_bytes_iterator.png
hitizrt:type_info: detail:AtomicTypes< hiti:rt:bytes:terator >

|

il :Aype_info:Bytesiterator

_static/doxygen/classhilti_1_1util_1_1type__erasure_1_1_erased_base.png
hiti:util:type_erasure:trait: TypeE rased

|

hil-ufl-type_erasure:E rasedBase< Tral, Concept, Model, Conceptargs >

_static/doxygen/classhilti_1_1type_1_1trait_1_1is_reference_type.png
hilt-type:trait:isReferenceType
[MbpetralieneterenceType |

ilt:type::StrongReference

hilt:type::ValueReference

iltztype: WeakReference

_static/doxygen/classhilti_1_1rt_1_1result_1_1_no_result.png
RuntimeError

[

il result-NoResull

_static/doxygen/classhilti_1_1type_1_1trait_1_1is_view.png
hiliztype:trait:isyiew

ilt:typezstream: View

_static/doxygen/classhilti_1_1rt_1_1result_1_1_no_error.png
RuntimeError

|

il - result-NoE rar

_static/doxygen/classhilti_1_1type_1_1trait_1_1is_runtime_non_trivial.png
hiliztype: trait:isRuntimeNonT rivial

ilt:type:Bytes

ilt:type: bytes:terator

iltztype:List

iltztype:ist:Herator

ilztype:Map

iltztype:map:Herator

ilt:type:RegExp

iltztype::Set

iltztype:set:terator

hiltztype:Stream

ilt:type:stream:erator

iltztypezstream:View

hilztype:Vector

iltztype::vector:erator

_static/doxygen/classhilti_1_1rt_1_1stream_1_1detail_1_1_chain.png
hitirt:intrusive_ptr:ManagedObject

|

il :stream:detail-Chain

_static/doxygen/classhilti_1_1type_1_1trait_1_1takes_arguments.png
hilztype:trait:takesé rguments

iltztype:Struct

spicy:type-Unit

_static/doxygen/classhilti_1_1rt_1_1set_1_1_empty.png
stzsete bool >

T

itz :Set< bool >

|

il s tEmpty

_static/doxygen/classhilti_1_1type_1_1trait_1_1is_viewable.png
hilztype:trait:isViewable

hiltztype:Stream

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_any.png
hitizrt:type_info: detail:ValueLessType.

|

il - Aype_infozAny

_static/doxygen/classhilti_1_1type_1_1vector_1_1_iterator.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| A

0 f

hil: TypeBase

ilt:type:raitsiterator

hilt:type:rait:isDereferenceable

il:type:rait:isAllocable

ilztype:rait:isMutable

itz type:rait:isRuntimeNonT rivial

hil:type:rait:isParameterized

t

hiliztype:vectar:erator

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_address.png
hitirt:type_info: detail:AtomicTypes hilti: it Address >

|

il :Aype_infozAddress

_static/doxygen/classhilti_1_1type_1_1tuple_1_1_element.png
hitirait:ishode

iltizNodeBase

hilztype:uple: Element

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_bytes.png
hiti:rt:type_info: detail:AtomicTypes hilti: it:Bytes >

I

il :Aype_info:Bytes

_static/doxygen/classhilti_1_1util_1_1type__erasure_1_1_concept_base.png
hitirt:intrusive_ptr:ManagedObject

|

hil-ull-type_erasure:CanceptBase

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_bool.png
hitizrt:type_info: detail:AtomicType< bool >

|

il :type_info:Boal

_static/doxygen/classhilti_1_1util_1_1_uniquer.png
hit:utl:Cache< 1D, bool >

hil-utilzUniquer< D >

_static/doxygen/classhilti_1_1rt_1_1intrusive__ptr_1_1_managed_object.png
hitirtintrusive_ptr:ManagedObject

T

hilt:node_ref:detail:Control

il t:stream: detail:Chain

it Scape

ilt:utl:type_erasure:CanceptBase

_static/doxygen/classhilti_1_1type_1_1trait_1_1is_parameterized.png
hititype: trait:

isParameterized

itz type:detail-IntegerBase

iltztype:Enum

iltztype:Exception

iltztype:Function

iltztype:List

iltztype:ist:Herator

ilztype:Map

iltztype:map:Herator

ilt:type:Member

iltztype::Optional

iltztype:Result

iltztype::Set

iltztype:set:terator

ilt:type::StrongReference

iltztype::Struct

iltztype: Tuple

ilztype:Type_

iltztype:Union

hi:type::ValueReference

hilztype:Vector

iltztype::vector:erator

iltztype: WeakReference

spicy-type:Bitfield

spicy:type-Unit

_static/doxygen/classhilti_1_1rt_1_1_would_block.png
runtime_error

[

il - WouldBlock

_static/doxygen/classhilti_1_1type_1_1trait_1_1is_mutable.png
hiliztype:trait:isMutable

ilt:type:Bytes

ilt:type: bytes:terator

itztype:Library

iltztype:List

iltztype:ist:Herator

ilztype:Map

iltztype:map:Herator

iltztype::Set

iltztype:set:terator

hiltztype:Stream

ilt:type:stream:erator

iltztype::Struct

iltztype:Union

hilztype:Vector

iltztype::vector:erator

spicy-type:Bitfield

spicy:type-Unit

_static/doxygen/classhilti_1_1rt_1_1map_1_1_empty.png
stdzmap< bool, bool >

T

itz rt:Map< bool, bool >

I

il 1t-map:Empty

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_value_reference.png
hiti:t:type_info: detail:DereferenceableType

|

il :type_info:valueReference

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1production_1_1_unit.png
spicy:rait:isProduction

|

spicy:detail:cadegen:ProductionBase spicy:trait:isNonTerminal

| A

spicy-detail-cadegen:production:Unit

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1production_1_1_type_literal.png
spicy:rait:isProduction

spicy:rait:isTerminal

|

|

spicy:detail:cadegen:ProductionBase

spicy-raitisLiteral

| E—

spicy-detail-codegen:production: TypeL teral

R

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_vector_iterator.png
hiti:t:type_info: detail:DereferenceableType

|

il :Aype_infozvectoriterator

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1production_1_1_while.png
spicy:rait:isProduction

|

spicy:detail:cadegen:ProductionBase spicy:trait:isNonTerminal

- @@ f

spicy-detail-codegen:production:While

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_vector.png
hiti:rt:type_info: detail: erableType

I

il - Aype_infozvector

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1production_1_1_variable.png
spicy:rait:isProduction

|

spicy:detail:cadegen:ProductionBase spicy:rait:isTerminal

| A

spicy-detail-codegen:production:Variable

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_weak_reference.png
hiti:t:type_info: detail:DereferenceableType

|

il :Aype_info: WeakReference

_static/doxygen/classspicy_1_1rt_1_1_backtrack.png
RecoverableFailure

spicy:t:ParseErmar

spicy-t-Backirack

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_void.png
hitizrt:type_info: detail:ValueLessType.

I

il :Aype_infozvoid

_static/doxygen/classspicy_1_1detail_1_1parser_1_1_scanner.png
SpicyFlexLexer

|

spicy-detail-parser-Scanner

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1detail_1_1_iterable_type.png
hitiztt:type_info: detail: erableType

T

il :type_info:Set

il :type_info:Vectar

_static/doxygen/classspicy_1_1rt_1_1_missing_data.png
RecoverableFailure

spicy:t:ParseErmar

spicy:t:MissingData,

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1detail_1_1_dereferenceable_type.png
hiti:t:type_info: detail:DereferenceableType

il t:type_info::Optional

itz t:Aype_info:Result

itz t:Aype_info: Setiteratar

itz :Aype_info:StrongReference

il :type_info:ValueReference

il :Aype_info:Vectoriterator

itz :type_info: WeakReference

_static/doxygen/classspicy_1_1rt_1_1_driver.png
spicy:t:Driver

SpicyDriver

SpicyDriver

SpicyDump

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1detail_1_1_value_less_type.png
hitizrt:type_info: detail:ValueLessType.

il t:Aype_info:zAny

itz :type_info:Library

il t:type _info::Void

_static/doxygen/classspicy_1_1rt_1_1_parsed_unit.png
hiti:rt:type_info:value: Parent

|

spicy:rt-Parsedlnit

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1detail_1_1_not_implemented_type.png
hiti:t:type_info: detail:NotimplementedType

[

itz t:Aype_info:Function

_static/doxygen/classspicy_1_1rt_1_1_parse_error.png
RecoverableFailure

1

spicy-t-ParseEror

e

spicy:t:Backirack

spicy:t:MissingData.

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1value_1_1_parent.png
hitiztt:type_info:value: Parent

|

spicy:rt:Parsedlnit

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1production_1_1_byte_block.png
spicy:rait:isProduction

|

spicy:detail:cadegen:ProductionBase spicy:trait:isNonTerminal

| A

spicy-detail-cadegen: production:ByteBlock

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_set_iterator.png
hiti:t:type_info: detail:DereferenceableType

I

il :Aype_info: Setleratar

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1production_1_1_ctor.png
spicy:rait:isProduction

spicy:rait:isTerminal

|

|

spicy:detail:cadegen:ProductionBase

spicy-raitisLiteral

| A

spicy-detail-cadegen:production:Clor

S |

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_set.png
hiti:rt:type_info: detail: erableType

I

il :Aype_infoset

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1production_1_1_counter.png
spicy:rait:isProduction

|

spicy:detail:cadegen:ProductionBase spicy:trait:isNonTerminal

S |

spicy-detail-cadegen:production:Counter

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_stream.png
hiti:rt:type_info::detail:AtomicTypes hilti: it:Stream >

I

il - Aype_infozStream

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1production_1_1_epsilon.png
spicy:rait:isProduction

|

spicy:detail:cadegen:ProductionBase spicy:rait:isTerminal

|

spicy-detail-codegen:production:Epsilon

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_signed_integer.png
hitit:type_info: detail: AtomicType< Width >

I

il :Aype_info:Signedinteger Width >

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1production_1_1_enclosure.png
spicy:rait:isProduction

|

spicy:detail:cadegen:ProductionBase spicy:trait:isNonTerminal

. |

spicy-detail-cadegen:production-Enclosure

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_stream_view.png
hitirt:type_info: detail:AtomicTypes hilti: it:stream:View >

|

il :Aype_infoStreamView

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1production_1_1_look_ahead.png
spicy:rait:isProduction

|

spicy:detail:cadegen:ProductionBase spicy:trait:isNonTerminal

|

spicy-detail-cadegen:production:LookAhead

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_stream_iterator.png
hiti:rt:type_info::detail:AtomicTypes hilti: it:stream: SafeConstiterator >

|

il :Aype_info: Streamiteratar

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1production_1_1_for_each.png
spicy:rait:isProduction

|

spicy:detail:cadegen:ProductionBase spicy:trait:isNonTerminal

A |

spicy-detail-codegen:production:FarEach

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_strong_reference.png
hiti:t:type_info: detail:DereferenceableType

I

il :Aype_info:StrongReference

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1production_1_1_sequence.png
spicy:rait:isProduction

|

spicy:detail:cadegen:ProductionBase spicy:trait:isNonTerminal

| A

spicy-detail-codegen:production: Sequence

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_string.png
hitit:type_info: detail: AtomicTypes< sta:string >

I

il :Aype_infostring

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1production_1_1_resolved.png
spicy:rait:isProduction

spicy:detail:cadegen:ProductionBase

spicy-detail-codegen:production:Resalved

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_unsigned_integer.png
hitit:type_info: detail: AtomicType< Width >

I

il t:Aype_info: nsignedintege < Widh >

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_time.png
hiti:t:type_info: detail:AtomicTypes< hiti:t:Time >

I

il :Aype_info:Time

_static/doxygen/classspicy_1_1detail_1_1codegen_1_1production_1_1_switch.png
spicy:rait:isProduction

|

spicy:detail:cadegen:ProductionBase spicy:trait:isNonTerminal

S |

spicy-detall-cadegen-production:Switch

_static/doxygen/classhilti_1_1rt_1_1type__info_1_1_result.png
hiti:t:type_info: detail:DereferenceableType

I

il t:Aype _info:Resull

_static/doxygen/structhilti_1_1operator___1_1generic_1_1_casted_coercion_1_1_operator.png
hitirait:ishode

hiltzArait-isOperator

hili-operatar_generic:CastedCoercion:Operatar

_static/doxygen/classhilti_1_1expression_1_1_logical_or.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

%

ilzexpression:LogicalOr

_static/doxygen/classhilti_1_1type_1_1_string.png
hitirait:ishode hitirait:ishode

iltizNodeBase hit:Arait-isType
hil: TypeBase il:type:rait:isAllocable

hilztype:String

_static/doxygen/structhilti_1_1rt_1_1detail_1_1is___vector_3_01_vector_3_01_t_00_01_allocator_01_4_01_4.png
true_type

I

il - detail-is_Vectar< Vectore T, Allocalor > >

_static/doxygen/classhilti_1_1type_1_1_stream.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| A

0 f

hil: TypeBase

il:type:rait:isAllocable

ilztype:rait:isMutable

hil:type:rait-isiterable

ilztype:rait:isViewable

itz type:rait:isRuntimeNonT rivial

t

hiliztype:Stream

_static/doxygen/structhilti_1_1rt_1_1detail_1_1is___vector.png
false_type

|

il - detail-is_Vectar< T >

_static/doxygen/classhilti_1_1expression_1_1_move.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

t f

ilzexpression:Move

_static/doxygen/classhilti_1_1type_1_1_struct.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hit:Arait-isType

| A—

B

hil: TypeBase

il:type:rait:isAllocable

hil:type:rait:isParameterized

itz type:rait-takes Arguments

ilztype:rait:isMutable

t

ilztype:Struct

_static/doxygen/structhilti_1_1rt_1_1is__tuple_3_01std_1_1tuple_3_01_t_8_8_8_01_4_01_4.png
true_type

|

il :7s_uple< std:tuple< T.. > >

_static/doxygen/classhilti_1_1expression_1_1_member.png
hitirait:ishode

|

iltizNodeBase il Arait-isExpression

| A

illzexp ression:Member

_static/doxygen/classhilti_1_1type_1_1_strong_reference.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| E—

%

hil: TypeBase

il:type:rait:isAllocable

hil:type:rait:isParameterized

hilt:type:rait:isDereferenceable

hil:type:rait:isReferenceType

t

il-type:StrongReference

_static/doxygen/structhilti_1_1rt_1_1is__tuple.png
false_type

|

il :15_uple< typename >

_static/doxygen/classhilti_1_1expression_1_1_resolved_i_d.png
hitirait:ishode

|

iltizNodeBase il Arait-isExpression

| A

ilzexp ression: ResolvedD

_static/doxygen/classhilti_1_1type_1_1_tuple.png
hitirait:ishode hitirait:ishode

| |

iltizNodeBase hit:Arait-isType
hil: TypeBase hili:type:rait:isAllocable | | hill:typeirait:isParameterized

ilztype:Tuple

_static/doxygen/structhilti_1_1rt_1_1trait_1_1is_union.png
hititArait:isUnion

[

itz t:Union< T >

_static/doxygen/classhilti_1_1expression_1_1_pending_coerced.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

| A

illi-exp ression: PendingCoerced

_static/doxygen/classhilti_1_1type_1_1_time.png
hitirait:ishode hitirait:ishode

iltizNodeBase hit:Arait-isType
hil: TypeBase il:type:rait:isAllocable

hilztype:Time

_static/doxygen/structhilti_1_1rt_1_1optional_1_1_unset.png
exception

[

il optional-Unset

_static/doxygen/classhilti_1_1expression_1_1_grouping.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

t f

il exp ression: Grouping

_static/doxygen/classhilti_1_1type_1_1_reg_exp.png
hitirait:ishode hitirait:ishode

I |

iltizNodeBase hi:Arait-isType
hil: TypeBase il:type:rait:isAllocable itz type:rait:isRuntimeNonT rivial

illztype:RegExp

_static/doxygen/structhilti_1_1detail_1_1visitor_1_1has_callback_3_01_c_00_01_func_sig_00_01std_1_1void__t_3_01d9401244de975c77cd2b8367e2ffadca3.png
true_type

[

il detailzvisitor-hasCallbacke C, Funcaig, sta-void_te dechype(sid:remove_cv_t< FUncsig C-* ~(&C operatar(}> >

_static/doxygen/classhilti_1_1expression_1_1_deferred.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

%

hilzexpression:Deferred

_static/doxygen/classhilti_1_1type_1_1_real.png
hitirait:ishode hitirait:ishode

iltizNodeBase hit:Arait-isType
hil: TypeBase il:type:rait:isAllocable

illztype:Real

_static/doxygen/structhilti_1_1detail_1_1visitor_1_1has_callback.png
false_type

[

il detailzvisitor-hasCallbacke C, Funcsig, fypename >

_static/doxygen/classhilti_1_1expression_1_1_list_comprehension.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

| |

hilzexp ression: ListComprehension

_static/doxygen/classhilti_1_1type_1_1_set.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| A

0 f

hil: TypeBase

il:type:rait:isAllocable

ilztype:rait:isMutable

hil:type:rait-isiterable

itz type:rait:isRuntimeNonT rivial

hil:type:rait:isParameterized

t

ilztype::Set

_static/doxygen/structhilti_1_1operator___1_1function_1_1_call_1_1_operator.png
hitirait:ishode

hiltzArait-isOperator

hilizoperatar_function:Call-Operator

_static/doxygen/classhilti_1_1expression_1_1_keyword.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

1t

ilzexp ression: Keyword

_static/doxygen/classhilti_1_1type_1_1_result.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| E—

%

hil: TypeBase

il:type:rait:isAllocable

hil:type:rait:isParameterized

hilt:type:rait:isDereferenceable

t

ilt-type:Resull

_static/doxygen/structhilti_1_1node__ref_1_1_invalid.png
runtime_error

I

ilznode_ref-invaid

_static/doxygen/classhilti_1_1expression_1_1_logical_not.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

. f

iltzexp ression:LogicalNot

_static/doxygen/classhilti_1_1expression_1_1_logical_and.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

| B

ilzexp ression: Logicaland

_static/doxygen/classhilti_1_1type_1_1_signed_integer.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hit:Arait-isType

| A—

B

hil: TypeBase

il:type:rait:isAllocable

hil:type:rait:isParameterized

t

ilt:type:detail-IntegerBase

il-type:Signedinteger

_static/doxygen/classhilti_1_1type_1_1_network.png
hitirait:ishode hitirait:ishode

iltizNodeBase hit:Arait-isType
hil: TypeBase il:type:rait:isAllocable

ilztype:Network

_static/doxygen/structhilti_1_1_constant_folding_visitor.png
hittizOptimize Visitor

hitizcetailvisitor: Visitor bool, ConstantFoldingVisitor >

t

f

hilzConstantFoldingVisitor

_static/doxygen/struct_visitor_compute_canonical_i_ds.png
hiltzdetail: visitor::Visitor< D, VisitorComputeCanonicallDs >

|

VisitorComputeCananicallDs

_static/doxygen/classhilti_1_1expression_1_1_builtin_function.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

- f

illzexp ression: BuilinFunction

_static/doxygen/classhilti_1_1type_1_1_operand_list.png
hitirait:ishode hitirait:ishode

| |

iltizNodeBase hit:Arait-isType

t f

hil: TypeBase

ilt-type:OperandList

_static/doxygen/structhilti_1_1_function_visitor.png
hittizOptimize Visitor

hiti:cetailvisitor.:Visitor< bool, Functionvisitor >

t

f

hilizFunctionVisitor

_static/doxygen/classhilti_1_1expression_1_1_assign.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

. f

hilzexp ression: Assign

_static/doxygen/classhilti_1_1type_1_1_null.png
hitztrait-ishode | hilti:trait:isNode

I |

hili:NodeBase | | hiitraitisType

t f

hil: TypeBase

hilztypezNul

_static/doxygen/structhilti_1_1_feature_requirements_visitor.png
hiltzdetail:visitor::Visitor< void, FeatureRequirementsVisitor >

|

il eatureRequirementsvisior

_static/doxygen/classhilti_1_1expression_1_1_ctor.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

t f

illzexp ression:Clor

_static/doxygen/classhilti_1_1type_1_1_port.png
hitirait:ishode hitirait:ishode

iltizNodeBase hit:Arait-isType
hil: TypeBase il:type:rait:isAllocable

hil-typezPart

_static/doxygen/structhilti_1_1_type_visitor.png
hittizOptimize Visitor

hitizdetail:visitor: Visitar< bool, TypeVisitor >

A |

il Typevisitor

_static/doxygen/classhilti_1_1expression_1_1_coerced.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

%

ilzexpression:Coerced

_static/doxygen/classhilti_1_1type_1_1_optional.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| E—

%

hil: TypeBase

il:type:rait:isAllocable

hil:type:rait:isParameterized

hilt:type:rait:isDereferenceable

t

hillztype::Optional

_static/doxygen/structhilti_1_1_member_visitor.png
hittizOptimize Visitor

hitizdetail-visitor. Visitar< bool, MemberVisitor >

S |

iz MemberVisior

_static/doxygen/classhilti_1_1type_1_1_interval.png
hitirait:ishode hitirait:ishode

iltizNodeBase hit:Arait-isType
hil: TypeBase il:type:rait:isAllocable

iltztype:interval

_static/doxygen/splitbar.png

_static/doxygen/classhilti_1_1type_1_1_function.png
hitirait:ishode

hitirait:ishode

|

iltizNodeBase

hit:Arait-isType

| A

hil: TypeBase ilztypezirait

isParameterized

|

hiltztype: Function

_static/doxygen/spicy-logo-small.png

_static/doxygen/classhilti_1_1type_1_1_list.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| A

0 f

hil: TypeBase

il:type:rait:isAllocable

ilztype:rait:isMutable

hil:type:rait-isiterable

itz type:rait:isRuntimeNonT rivial

hil:type:rait:isParameterized

t

ilztype:List

_static/doxygen/struct_visitor_check_canonical_i_ds.png
hiltzdetail:visitor::Visitor< void, VisitorCheckCanonicallDs >

I

VisitorCheckCananicaliDs

_static/doxygen/classhilti_1_1type_1_1_library.png
hitirait:ishode hitirait:ishode

| |

iltizNodeBase hit:Arait-isType
hil: TypeBase il:type:rait:isAllocable | | hiti:type:trait:ishutable

hiliztype-Library

_static/doxygen/struct_assign_field_indices_visitor.png
hiltzdetail:visitor::Visitor< void, AssignFieldindicesVisitor >

|

AssignFielaindicesvisior

_static/doxygen/classhilti_1_1type_1_1_member.png
hitirait:ishode

hitirait:ishode

|

iltizNodeBase

hit:Arait-isType

| A

hil: TypeBase ilztypezirait

isParameterized

|

ilztype:Member

_static/doxygen/classhilti_1_1type_1_1_map.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| A

0 f

hil: TypeBase

il:type:rait:isAllocable

ilztype:rait:isMutable

hil:type:rait-isiterable

itz type:rait:isRuntimeNonT rivial

hil:type:rait:isParameterized

t

ilztype:Map

_static/doxygen/struct_visitor_clear_canonical_i_ds.png
hiltzdetail:visitor::Visitor< void, VisitorClearCanonicallDs >

|

Visito ClearCanonicallDs

_static/doxygen/search/close.png

_static/doxygen/classhilti_1_1rt_1_1_formatting_error.png
RuntimeError

|

il 1F o matingErrar

_static/doxygen/classhilti_1_1type_1_1set_1_1_iterator.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| A

0 f

hil: TypeBase

ilt:type:raitsiterator

hilt:type:rait:isDereferenceable

il:type:rait:isAllocable

ilztype:rait:isMutable

itz type:rait:isRuntimeNonT rivial

hil:type:rait:isParameterized

t

hilt-type:set:iterator

_static/doxygen/classhilti_1_1type_1_1map_1_1_iterator.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| A

0 f

hil: TypeBase

ilt:type:raitsiterator

hilt:type:rait:isDereferenceable

il:type:rait:isAllocable

ilztype:rait:isMutable

itz type:rait:isRuntimeNonT rivial

hil:type:rait:isParameterized

t

ilt-type:map-iterator

_static/doxygen/search/mag_sel.png

_static/doxygen/classhilti_1_1rt_1_1_set.png
stizsete T >

T

il :Set< T >

_static/doxygen/classhilti_1_1type_1_1stream_1_1_view.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| A

0 f

hil: TypeBase

ilt:type:rait:isView

hil:type:rait-isiterable

il:type:rait:isAllocable

itz type:rait:isRuntimeNonT rivial

t

hil-typecstream:View

_static/doxygen/search/search_m.png

_static/doxygen/classhilti_1_1rt_1_1_map.png
stzmaps K, V >

T

il Maps K, V >

_static/doxygen/classhilti_1_1type_1_1stream_1_1_iterator.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| A

0 f

hil: TypeBase

ilt:type:raitsiterator

hilt:type:rait:isDereferenceable

il:type:rait:isAllocable

ilztype:rait:isMutable

itz type:rait:isRuntimeNonT rivial

t

il-type:strean:iterator

_static/doxygen/search/search_l.png

_static/doxygen/classhilti_1_1rt_1_1_union.png
hit t:trait:isUnion

|

il :-nion= T >

_static/doxygen/classhilti_1_1type_1_1trait_1_1is_dereferenceable.png
hilti:type:trait-isDereferenceable

ilt:type: bytes:terator

iltztype:ist:Herator

iltztype:map:Herator

iltztype::Optional

iltztype:Result

iltztype:set:terator

ilt:type:stream:erator

ilt:type::StrongReference

hi:type::ValueReference

iltztype::vector:erator

iltztype: WeakReference

_static/doxygen/classhilti_1_1rt_1_1_strong_reference.png
std:shared_ptr< T >

|

il StrongReference< T >

_static/doxygen/classhilti_1_1type_1_1trait_1_1is_allocable.png
hitiztype:trait:isAllocable

ilt:type:zAddress

iltztype::Auto

iltztype:Boal

ilt:type:Bytes

ilt:type: bytes:terator

ilt:type:detail-IntegerBase

iltztype:Enum

ilt:type:Error

iltztype:Exception

iltztype:interval

itztype:Library

iltztype:List

iltztype:ist:Herator

ilztype:Map

iltztype:map:Herator

ilt:type:Network

iltztype::Optional

iltztype:Part

iltztype:Real

ilt:type:RegExp

iltztype:Result

iltztype::Set

iltztype:set:terator

hiltztype:Stream

ilt:type:stream:erator

iltztypezstream:View

hiltztype::String

ilt:type::StrongReference

iltztype::Struct

iltztype:Time

iltztype: Tuple

iltztype:Union

hiltztype::Unknown

hi:type::ValueReference

hilztype:Vector

iltztype::vector:erator

iltztype: WeakReference

spicy-type:Bitfield

spicy:type:Sink

spicy:type-Unit

_static/doxygen/search/search_r.png

_static/doxygen/classhilti_1_1rt_1_1_weak_reference.png
stzweak_ptre T >

|

il 1t-WeakReferences T >

_static/doxygen/classhilti_1_1type_1_1trait_1_1is_iterator.png
hiliztype:trait:isiterator

[MDpefralieteranl |

iltztype: bytes:terator

iltztype:list:Herator

iltztype:map:Herator

iltztype:set:terator

iltztype:stream:erator

ilt:type:vectar:erator

_static/doxygen/classhilti_1_1rt_1_1_vector.png
stilzvectors T, Allocator >

¥

il t:Vectars T, Allocator >

_static/doxygen/classhilti_1_1type_1_1trait_1_1is_iterable.png
hiliztype: trait:isiterable

ilt:type:Bytes

iltztype:List

illztype:Map

iltztype::Set

hiltztype:Stream

ilt:typezstream: View

hil:typezVectar

_static/doxygen/classhilti_1_1operator___1_1generic_1_1_casted_coercion.png
hitirait:ishode

hitirait:ishode

|

iltizNodeBase

iz Arait-isExpression

ilt:trait-isResalvedOperatar

t

f

ilt:expression: ResolvedOperato Base

hilizoperator_-generic:CastedCoercion

_static/doxygen/classhilti_1_1type_1_1function_1_1_result.png
hitirait:ishode

iltizNodeBase

hil-type:function: Resull

_static/doxygen/classhilti_1_1operator___1_1function_1_1_call.png
hitirait:ishode

hitirait:ishode

|

iltizNodeBase

iz Arait-isExpression

ilt:trait-isResalvedOperatar

t

f

ilt:expression: ResolvedOperato Base

hilizoperatar_function:Cal

_static/doxygen/classhilti_1_1type_1_1enum___1_1_label.png
hitirait:ishode

|

iltizNodeBase

ilt:ufl:type_erasure-trait:Singleton

| |

hillztype:zenum_:Label

_static/doxygen/tab_s.png

_static/doxygen/classhilti_1_1rt_1_1_exception.png
runtime_error

[

il 1t Exception

_static/doxygen/classhilti_1_1rt_1_1_bytes.png
string

T

il 1t Bytes

_static/doxygen/classhilti_1_1type_1_1list_1_1_iterator.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| A

0 f

hil: TypeBase

ilt:type:raitsiterator

hilt:type:rait:isDereferenceable

il:type:rait:isAllocable

ilztype:rait:isMutable

itz type:rait:isRuntimeNonT rivial

hil:type:rait:isParameterized

t

ilztype:ist-Herator

_static/doxygen/classhilti_1_1type_1_1_unsigned_integer.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hit:Arait-isType

| A—

B

hil: TypeBase

il:type:rait:isAllocable

hil:type:rait:isParameterized

t

ilt:type:detail-IntegerBase

hiliztype:Unsignedinteger

_static/doxygen/structspicy_1_1rt_1_1sink_1_1detail_1_1supports__sinks_3_01_t_00_01decltype_07_07void_08_01_t_1_1____sink_00_010_08_4.png
true_type

[

spicy:tsink detall-supports_sinks= T, declype((void) T-_sink, 0)>

_static/doxygen/structspicy_1_1rt_1_1sink_1_1detail_1_1supports__sinks.png
false_type

[

spicy:tsinkdetall-supports_sinks= T, typename >

_static/doxygen/classhilti_1_1expression_1_1_unresolved_operator.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

| |

illzexp ression: UnresolvedOperator

_static/doxygen/classhilti_1_1type_1_1_vector.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| A

0 f

hil: TypeBase

il:type:rait:isAllocable

ilztype:rait:isMutable

hil:type:rait-isiterable

itz type:rait:isRuntimeNonT rivial

hil:type:rait:isParameterized

t

hiliztypezvector

_static/doxygen/sync_off.png
&)
<y

_static/doxygen/classhilti_1_1expression_1_1_unresolved_i_d.png
hitirait:ishode

|

iltizNodeBase il Arait-isExpression

|

illzexpression: LnresolvediD

_static/doxygen/classhilti_1_1type_1_1_value_reference.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| E—

%

hil: TypeBase

il:type:rait:isAllocable

hil:type:rait:isParameterized

hilt:type:rait:isDereferenceable

hil:type:rait:isReferenceType

t

hiliztype-ValueReference

_static/doxygen/structspicy_1_1type_1_1detail_1_1_assign_indices.png
spicy:typesdetail- Assignindices

spicy:type-Unit

_static/doxygen/classhilti_1_1logging_1_1_stream.png
ostrearn

|

hilt-logging: Stream

_static/doxygen/classhilti_1_1type_1_1_weak_reference.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| E—

%

hil: TypeBase

il:type:rait:isAllocable

hil:type:rait:isParameterized

hilt:type:rait:isDereferenceable

hil:type:rait:isReferenceType

t

hilztype: WeakReference

_static/doxygen/tab_a.png

_static/doxygen/classhilti_1_1expression_1_1_void.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

t f

iltzexpression-vaid

_static/doxygen/classhilti_1_1type_1_1_void.png
hitztrait-ishode | hilti:trait:isNode

I |

hili:NodeBase | | hiitraitisType

t f

hil: TypeBase

hillztypezvoid

_static/doxygen/sync_on.png

_static/doxygen/classhilti_1_1node__ref_1_1detail_1_1_control.png
hitirt:intrusive_ptr:ManagedObject

I

hilznode_ref:detail-Contral

_static/doxygen/classhilti_1_1type_1_1detail_1_1_integer_base.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hit:Arait-isType

| A

hil: TypeBase hili:type:rait:isAllocable | | hill:typeirait:isParameterized

t

hil-type:detail-IntegerBase

T

ilt:type:Signedinteger

hitztype::Unsignedinteger

_static/doxygen/tab_h.png

_static/doxygen/classhilti_1_1node_1_1_none.png
hitirait:ishode

|

iltizNodeBase

ilt:ufl:type_erasure-trait:Singleton

| |

ilznodezNone

_static/doxygen/classhilti_1_1type_1_1bytes_1_1_iterator.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| A

0 f

hil: TypeBase

ilt:type:raitsiterator

hilt:type:rait:isDereferenceable

il:type:rait:isAllocable

ilztype:rait:isMutable

itz type:rait:isRuntimeNonT rivial

t

hilztype: bytes:iterator

_static/doxygen/tab_b.png

_static/doxygen/classhilti_1_1expression_1_1_ternary.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

1

ilzexpression: Temary

_static/doxygen/classhilti_1_1type_1_1_union.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hit:Arait-isType

| A—

B

hil: TypeBase

il:type:rait:isAllocable

hil:type:rait:isParameterized

ilztype:rait:isMutable

t

illztypeUnion

_static/doxygen/structspicy_1_1rt_1_1filter_1_1detail_1_1is__filter.png
false_type

|

spicy-t-fiter-detail:is_fiter< T, typename >

_static/doxygen/classhilti_1_1expression_1_1_resolved_operator_base.png
hitirait:ishode

hitirait:ishode

|

iltizNodeBase

it

ictralt-isExpression

ilt:trait-isResalvedOperatar

t

f

illexp ression: ResolvedOperalo Base

T

ilt:zoperatar_function:Call

hiltizoperator_-generic:CastedCoercion

_static/doxygen/classhilti_1_1type_1_1_type__.png
hitirait:ishode

hitirait:ishode

|

iltizNodeBase

hit:Arait-isType

| A

hil: TypeBase ilztypezirait

isParameterized

|

hiliztype:Type_

_static/doxygen/structspicy_1_1detail_1_1codegen_1_1_production_visitor.png
hiltzdetail:visitor::Visitor< void, ProductionVisitor, Production, hitizdetail:visitar:Order:Pre >

|

spicy-detail-codegen:Productionvisior

_static/doxygen/classhilti_1_1expression_1_1_type_info.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

%

ilzexpression: Typeino

_static/doxygen/classhilti_1_1type_1_1_unresolved_i_d.png
hitirait:ishode hitirait:ishode

I |

iltizNodeBase hi:Arait-isType

. f

hil: TypeBase

hilztype:nresolvediD

_static/doxygen/classhilti_1_1expression_1_1_type__.png
hitirait:ishode hitirait:ishode

I I

iltizNodeBase iz Arait-isExpression

t f

hilzexp ression: Type_

_static/doxygen/classhilti_1_1type_1_1_unknown.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| E—

S

hil: TypeBase

il:type:rait:isAllocable

ilt:ufl:type_erasure-trait:Singleton

t

f

hilztype::nknown

_static/doxygen/structspicy_1_1rt_1_1filter_1_1detail_1_1is__filter_3_01_t_00_01decltype_07_07void_08_01_t_1_1____forward_00_010_08_4.png
true_type

I

spicy-rt-fier-detail:is_fiter< T, dechype((vaid) T-_forward, 0)>

_static/doxygen/classhilti_1_1expression_1_1_type_wrapped.png
hitirait:ishode hitirait:ishode

|

I

iltizNodeBase iz Arait-isExpression

- f

hilzexp ression: TypeW rapped

_images/hilti-logo.png

_static/hilti-logo.png

_static/minus.png

_static/file.png

_static/doxygen/classspicy_1_1trait_1_1is_production.png
spicyraiti

isProduction

spicy:detail:cadeg

en:ProductionBase

spicy:detail:cadegen:production:Boalean

spicy:detail:cadegen:production:ByteBlock

spicy:detail:cadegen:production:Counter

spicy:detail:cadegen:production:Ctor

spicy:detail:cadegen:production:Enclosure

spicy:detail:cadegen:production:Epsilon

spicy:detail:cadegen:production:FarEach

spicy:detail:cadegen:production:LookAhead

spicy:detail:cadegen:production: Resalved

spicy:detail:codegen:production: Sequence

spicy:detail:cadegen:production:Switch

spicy:detail:cadegen:production: TypeL teral

spicy:detail:cadegen:production:Linit

spicy:detail:cadegen:production:Variable

spicy:detail:cadegen:production:While

_static/plus.png

_static/doxygen/classspicy_1_1trait_1_1is_unit_item.png
hitirait:ishode

spicy-rait-isUniitem

spicy:type-unit:item: Field

spicy:typezunit:item:Property

spicy:typezunit:item:Sink

spicy:type-unit:tem:Switch

spicy:type-unit:tem:UnitHook

spicy:typezunit:item: UnresolvedField

spicy:type-unit:item:Variable

_static/doxygen/classspicy_1_1trait_1_1is_terminal.png
spicy:trait:isTerminal

spicy:detail:cadegen:production:Epsilon

spicy:detail:cadegen:production:Variable spicy-raitisLiteral

i

spicy:detail:cadegen:production:Ctor

spicy:detail:cadegen:production: TypeL teral

_static/doxygen/classspicy_1_1rt_1_1zlib_1_1_zlib_error.png
RuntimeError

|

spicy:tzlib: ZIBE T

_static/doxygen/classspicy_1_1rt_1_1driver_1_1_parsing_state_for_driver.png
spicy:tadriver:ParsingState

|

spicy-t-ariver-ParsingstateF orDriver

_static/doxygen/classspicy_1_1statement_1_1_print.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase iltzArait-isStatement

1

spicy-statement:Print

_static/doxygen/classspicy_1_1statement_1_1_confirm.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase iltzArait-isStatement

%

spicy-statement:Canfirm

_static/doxygen/classspicy_1_1statement_1_1_stop.png
hitirait:ishode hitirait:ishode

I |

iltizNodeBase iltzArait-isStatement

1t

spicy:statement:Stop

_static/doxygen/classspicy_1_1statement_1_1_reject.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase iltzArait-isStatement

. f

spicy-statement-Reject

_static/doxygen/classspicy_1_1trait_1_1is_non_terminal.png
spicy-rait:isNonTerminal

spicy:detail:cadegen:production:Boalean

spicy:detail:cadegen:production:ByteBlock

spicy:detail:cadegen:production:Counter

spicy:detail:cadegen:production:Enclosure

spicy:detail:cadegen:production:FarEach

spicy:detail:cadegen:production:LookAhead

spicy:detail:codegen:production: Sequence

spicy:detail:cadegen:production:Switch

spicy:detail:cadegen:production:Linit

spicy:detail:cadegen:production:While

_static/doxygen/classspicy_1_1trait_1_1is_literal.png
spicy:rait:isTerminal

I

spicy-raitisLiteral

T

spicy:detail:cadegen:production:Ctor spicy:detail:cadegen:production: TypeL teral

_static/spicy-logo-with-border.png

_static/spicy-logo-wth-border.png

_static/spicy-logo-small.png

_static/spicy-logo-square.png

_static/doxygen/bdwn.png

_static/doxygen/class_abort_exception.png
exception

[

AponException

_static/spicy-logo.png

_static/doxygen/bc_s.png

_static/doxygen/class_lambda_3_01_out_07_in_8_8_8_08_4.png
LambdaExecutors Out(in...J>

I

Lambda< Outfn..)>

_static/doxygen/classspicy_1_1rt_1_1driver_1_1_parsing_state.png
spicy:tadriver:ParsingState

I

spicy:t-driver:ParsingStateForDriver

_static/doxygen/classspicy_1_1rt_1_1base64_1_1_base64_error.png
RuntimeError

|

spicy:t-hasebd:BaseBAE T

_static/doxygen/class_lambda_executor_3_01_out_07_in_8_8_8_08_4.png
LambdaExecutors Out(in...J>

I

Lambda< Outgn..)>

_static/doxygen/class_spicy_driver.png
hittizDriver

I

spicy-Driver

spicy:rt:Driver

spicy:rt:Driver

t

SpicyDriver

P f

_static/doxygen/class_unknown_reference.png
runtime_error

|

UnknownReference

_static/doxygen/classhilti_1_1_attribute.png
hitirait:ishode

iltizNodeBase

il Atibute

_static/doxygen/class_spicy_dump.png
hittizDriver

I

spicy-Driver | | spicyzr:Driver

1

SpicyDump

_static/doxygen/class_spicyc.png
hittizDriver

spicy-Driver

Spicyc

_static/doxygen/classhilti_1_1_declaration.png
Declaration

|

hilizDeclaration

_static/doxygen/classhilti_1_1_declaration_base.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hiltztrait-isDeclaration

| A

B |

hili-Declas

rationBase

it declaration:Canstant

itz declaration:Expression

il declaration:Field

itz declaration:Function

it declaration: GlobalVariable

itz declaration:impotedhodule

itz declaration:Localvariable

itz declaration:Module

itz declaration:Paramster

il declaration:Prapery.

il declaration: Type

spicy:declaration:UnitHook

_static/doxygen/classhilti_1_1_attribute_set.png
hitirait:ishode

iltizNodeBase

il AftributeSet

_static/doxygen/folderopen.png

_static/doxygen/classhilti_1_1_code_formatter.png
hittizCodeF ormatter

I

il detail:cooc:F o matter

_static/doxygen/classhilti_1_1type_1_1_enum.png
hitirait:ishode hitirait:ishode

| |

iltizNodeBase hit:Arait-isType
hil: TypeBase hili:type:rait:isAllocable | | hill:typeirait:isParameterized

iltztypeEnum

_static/doxygen/nav_g.png

_static/doxygen/classhilti_1_1type_1_1_doc_only.png
hitti:trait-ishode | hiltitrait:isNode.

|

|

iltizNodeBase hi:Arait-isType

. f

hil: TypeBase

hillztype:DocOnly

_static/doxygen/nav_f.png

_static/doxygen/classhilti_1_1type_1_1_exception.png
hitirait:ishode hitirait:ishode

| |

iltizNodeBase hit:Arait-isType
hil: TypeBase hili:type:rait:isAllocable | | hill:typeirait:isParameterized

hiltztype:Exception

_static/doxygen/open.png

_static/doxygen/classhilti_1_1type_1_1_error.png
hitirait:ishode hitirait:ishode

|

iltizNodeBase hit:Arait-isType

hil: TypeBase il:type:rait:isAllocable

hiliztype-Ermor

_static/doxygen/nav_h.png

_static/doxygen/classhilti_1_1trait_1_1is_type.png
hitirait:ishode

hilizArait-isType

hil: TypeBase

ilt:type:zAddress

ilt:type:zAny

iltztype::Auto

iltztype:Boal

ilt:type:Bytes

ilt:type: bytes:terator

ilt:type:detail-IntegerBase

hiltztype:DocOnly

iltztype:Enum

ilt:type:Error

iltztype:Exception

iltztype:Function

iltztype:interval

itztype:Library

iltztype:List

iltztype:ist:Herator

ilztype:Map

iltztype:map:Herator

ilt:type:Member

ilt:type:Network

ilztypezNul

iltztype::OperandList

iltztype::Optional

iltztype:Part

iltztype:Real

ilt:type:RegExp

iltztype:Result

iltztype::Set

iltztype:set:terator

hiltztype:Stream

ilt:type:stream:erator

iltztypezstream:View

hiltztype::String

ilt:type::StrongReference

iltztype::Struct

iltztype:Time

iltztype: Tuple

ilztype:Type_

iltztype:Union

hiltztype::Unknown

iltztype:UnresolvediD

hi:type::ValueReference

hilztype:Vector

iltztype::vector:erator

iltztype::Void

iltztype: WeakReference

spicy-type:Bitfield

spicy:type:Sink

spicy:type-Unit

_static/doxygen/closed.png

_static/doxygen/classhilti_1_1trait_1_1is_statement.png
hitirait:ishode

hil-Arait-isStatement

il statement:Assert

ilt:statement:Block

iltzstatement:Break

itz statement:Comment

il statement:Continue

il statement:Decaration

itz statement:Expression

iltzstatement:For

il statement:If

itz statement:Retum

il statement:Switch

it statement:Thraw

il statement:Try

itz statement: While

il statement.:Vield

spicy:statement:Canfim

spicy:statement:Print

spicy:statement: Reject

spicy:statement:Stop

_static/doxygen/classspicy_1_1type_1_1unit_1_1item_1_1switch___1_1_case.png
hitirait:ishode

iltizNodeBase

spicy-type-unit:item:switch_-Case

_static/doxygen/classhilti_1_1type_1_1_any.png
hitztrait-ishode | hilti:trait:isNode

I |

hili:NodeBase | | hiitraitisType

t f

hil: TypeBase

hiliztypezAny

_static/doxygen/classhilti_1_1type_1_1_address.png
hitirait:ishode hitirait:ishode

iltizNodeBase hit:Arait-isType
hil: TypeBase il:type:rait:isAllocable

hil-type::Address

_static/doxygen/doc.png

_static/doxygen/classhilti_1_1type_1_1_bool.png
hitirait:ishode hitirait:ishode

iltizNodeBase hit:Arait-isType
hil: TypeBase il:type:rait:isAllocable

illztype:Boal

_static/doxygen/folderclosed.png

_static/doxygen/classhilti_1_1type_1_1_auto.png
hitirait:ishode hitirait:ishode

iltizNodeBase hit:Arait-isType
hil: TypeBase il:type:rait:isAllocable

hilztype:zAut

_static/doxygen/doxygen.png
doxy.ge

_static/doxygen/classhilti_1_1type_1_1_bytes.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hi:Arait-isType

| A

0 f

hil: TypeBase

il:type:rait:isAllocable

ilztype:rait:isMutable

hil:type:rait-isiterable

itz type:rait:isRuntimeNonT rivial

t

ill-type:Bytes

_static/doxygen/classhilti_1_1_function.png
hitirait:ishode

iltizNodeBase

hilizFunction

_static/doxygen/classhilti_1_1_i_d.png
hitirait:ishode

itz detail:IDBase< 1D >

iltizNodeBase

ilt:ufl:type_erasure-trait:Singleton

t

f

ilt-ID

_static/doxygen/classhilti_1_1_driver.png
hittizDriver

spicy-Driver

Spicyc

SpicyDriver

SpicyDump

_static/doxygen/classhilti_1_1_node_base.png
hitirait:ishode

ilizNodeBase,

it Afirbute

il AftributeSet

hit:ctor:Address

ilt:ctor:Boal

il:ctor:Bytes

ilt:ctor:Coerced

hilt:ctor:Default

ilt:ctor:detail:IntegerBase< T, § >

il:ctor:Enum

il:ctor-E rror

il ctor:Exception

iltzctor:inte rval

hilt:ctor:Lirary

iltzctor:List

ilt:ctor:Map

ilt:ctor:map:Element

ilt:ctor:Network

iltzctor:Nul

ilt:ctor:Optional

hil:ctor:Part

ilt:ctor:Real

ilt:ctor:RegExp

hilt:ctor:Result

ilt:ctor:Set

ilt:ctor:Stream

ilt:ctor:String

ilt:ctor:StrongReference

il ctor:Struct

ilt:ctorstruct_Field

hilt:ctor:Time

ilt:ctor:Tuple

hiltzctor:Union

hilt:ctor:ValueReference

hilt:ctor:Vector

il:ctor:WeakReference

hiltizDeclarationBase

il exp ression: Assign

il exp ression:BuilinFunction

ilt:expression:Coerced

itz exp ression: Clor

il expression:Deferred

il exp ression:Grouping

iltzexpression: Keyword

il exp ression: ListComprehension

iltzexpression: Logicaland

ilt:expression:LogicaNot

ilt:expression:LogicalOr

ilt:expression:Member

ilt:expression:Mave

ilt:exp ression: PendingCoerced

ilt:expression: ResolvedD

ilt:expression: ResolvedOperato Base

il exp ression:Temary

iltzexpression:Type_

ilt:exp ression: Typelnfo

il exp ression: TypeW rapped

ilt:expression: LnresolvediD

ilt:exp ression: UnresolvedOperator

iltzexpression:Vaid

i Function

ilt:D

itz Module

hitznodezNane

il statement:Assert

ilt:statement:Block

iltzstatement:Break

itz statement:Comment

il statement:Continue

il statement:Decaration

itz statement:Expression

iltzstatement:For

il statement:If

itz statement:Retum

il statement:Switch

itz statement:switch_:Case

it statement:Thraw

il statement:Try

il statement:try_:Catch

itz statement: While

il statement.:Vield

iltztype:zenum_:Label

ilt:type:function: Result

iltztype:uple: Element

hil: TypeBase

il ctor:detal:IntegeBase< nfe4_t, type: Signedinteger >

il ctor:detal:IntegerBase< in54_t, type:Lnsignedinteger >

spicy:ctor-Unit

spicy-Hook

spicy:statement:Canfim

spicy:statement:Print

spicy:statement: Reject

spicy:statement:Stop

spicy:type-hiffield:Bits

spicy:type-unit:item: Field

spicy:type-unit:item:Property

spicy:typezunit:item:Sink

spicy:typeunit:tem:Switch

spicy:type-unit:item:switch_:Case

spicy:type-unit:tem:UnitHook

spicy:typezunit:item: UnresolvedField

spicy:type-unit:tem:Variable

_static/doxygen/classhilti_1_1_optimizer_visitor.png
hiltizOptimize Visitor

T

itz ConstantFoldingVisitor

hiltizFunctionVistar

iz MemberVisior

il TypeVisitor

_static/doxygen/classhilti_1_1_module.png
hitirait:ishode

iltizNodeBase

iz Module

_static/doxygen/classhilti_1_1_node.png
Node

|

iltzNode,

_static/doxygen/classhilti_1_1_type_base.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hit:Arait-isType

| A

B |

hili: TypeBase

ilt:type:zAddress

ilt:type:zAny

iltztype::Auto

iltztype:Boal

ilt:type:Bytes

ilt:type: bytes:terator

ilt:type:detail-IntegerBase

hiltztype:DocOnly

iltztype:Enum

ilt:type:Error

iltztype:Exception

iltztype:Function

iltztype:interval

itztype:Library

iltztype:List

iltztype:ist:Herator

ilztype:Map

iltztype:map:Herator

ilt:type:Member

ilt:type:Network

ilztypezNul

iltztype::OperandList

iltztype::Optional

iltztype:Part

iltztype:Real

ilt:type:RegExp

iltztype:Result

iltztype::Set

iltztype:set:terator

hiltztype:Stream

ilt:type:stream:erator

iltztypezstream:View

hiltztype::String

ilt:type::StrongReference

iltztype::Struct

iltztype:Time

iltztype: Tuple

ilztype:Type_

iltztype:Union

hiltztype::Unknown

iltztype:UnresolvediD

hi:type::ValueReference

hilztype:Vector

iltztype::vector:erator

iltztype::Void

iltztype: WeakReference

spicy-type:Bitfield

spicy:type:Sink

spicy:type-Unit

_static/doxygen/classhilti_1_1_scope.png
hitirt:intrusive_ptr:ManagedObject

|

il Scape

_static/doxygen/classhilti_1_1_type.png
Type

[

hili: Type

_static/doxygen/classhilti_1_1trait_1_1is_node.png
hititrait:ishode

iltizNodeBase.

iltzArait:isClor

hiltztrait-isDeclaration

iz Arait-isExpression

hiltzArait-isOperator

iltzArait-isStatement

hil:Arait:isType

spicy:trait:isUnititem

_static/doxygen/classspicy_1_1type_1_1unit_1_1item_1_1_unit_hook.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase spicy:trait:isUnititem

- f

spicy-type-unit:tem:nitHook

_static/doxygen/classspicy_1_1type_1_1unit_1_1item_1_1_switch.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase spicy:trait:isUnititem

. f

spicy-type-unitten:Switch

_static/doxygen/classhilti_1_1trait_1_1is_resolved_operator.png
hiliztrait:isResolvedOperator

I

ilt:expression: ResolvedOperato Base

i

ilt:zoperatar_function:Call hiltizoperator_-generic:CastedCoercion

_static/doxygen/classspicy_1_1type_1_1unit_1_1item_1_1_variable.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase spicy:trait:isUnititem

| |

Spicy-type-unit:item:variable

_static/doxygen/classhilti_1_1trait_1_1is_operator.png
hitirait:ishode

|

hili-Arait-isOperator

T

hilt:zoperatar_function:Call:Operator hiltizoperatar_generic:CastedCoercion:Operatar

_static/doxygen/classspicy_1_1type_1_1unit_1_1item_1_1_unresolved_field.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase spicy:trait:isUnititem

| |

spicy-type-unit-item: UnresolvedField

_static/doxygen/classspicy_1_1type_1_1_sink.png
hitirait:ishode hitirait:ishode

iltizNodeBase hit:Arait-isType
hil: TypeBase il:type:rait:isAllocable

spicy-type-Sink

_static/doxygen/classspicy_1_1type_1_1_bitfield.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hit:Arait-isType

| A—

B

hil: TypeBase

il:type:rait:isAllocable

hil:type:rait:isParameterized

ilztype:rait:isMutable

t

spicy-type:Bifield

_static/doxygen/classspicy_1_1type_1_1bitfield_1_1_bits.png
hitirait:ishode

iltizNodeBase

spicy-type- hifield:Bits

_static/doxygen/classspicy_1_1type_1_1_unit.png
hitirait:ishode

hitirait:ishode

|

|

iltizNodeBase

hit:Arait-isType

| A

B |

spicy:typegetail:Assignindices

hil: TypeBase

il:type:rait:isAllocable

hil:type:rait:isParameterized

itz type:rait-takes Arguments

ilztype:rait:isMutable

i

spicy-type-Unit

_static/doxygen/classspicy_1_1type_1_1unit_1_1item_1_1_property.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase spicy:trait:isUnititem

| A

spicy-type-unit:item:Property

_static/doxygen/classspicy_1_1type_1_1unit_1_1item_1_1_field.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase spicy:trait:isUnititem

%

spicy-type-unit:item:Field

_static/doxygen/classspicy_1_1type_1_1unit_1_1item_1_1_sink.png
hitirait:ishode hitirait:ishode

|

|

iltizNodeBase spicy:trait:isUnititem

t f

spicy-type-unit:item:Sink

